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Foreword 

This lovely little book will take off and fly on its own power, but the 
author has asked me to write a few words, and one should not say no to a 
friend. Specific topics in fractal geometry and its applications have already 
benefited from several excellent surveys of moderate length, and gossip 
and preliminary drafts tell us that we shall soon see several monographic 
treatments of broader topics. For the teacher, however, these surveys and 
monographs are not enough, and an urgent need for more helpful books 
has been widely recognized. To write such a book is no easy task, but Jens 
Feder meets the challenge head on. His approach combines the old Viking's 
willingness to attack many difficulties at the same time, and the modern 
Norwegian's ability to achieve fine balance between diverging needs. lowe 
him special gratitude for presenting the main facts about R/ S analysis of 
long-run dependence; now a wide scientific public will have access to a large 
group of papers of mine that had until this day remained fairly confidential. 

Last but not least, we are all grateful to Jens for not having allowed 
undue personal modesty to deprive us of accounts of his own group's varied 
and excellent work. He did not attempt to say everything, but what he 
said is just fine. 

Benoit B. Mandelbrot 
Physics Department, IBM Thomas J. Watson Research Center 
Yorktown Heights, New York 10598 
and Mathematics Department, Yale University 
New Haven, Connecticut 06520 
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Preface 

This book grew out of research on phase-transitions, on the aggregation 
of immunoglobulins and recently on the viscous fingering of fluid displace­
ment in porous media. These research subjects represent examples of the 
general question: How is the microscopic behavior related to what we ob­
serve on the macroscopic scale? I now feel that fractals, relating geometry 
on different scales, are essential for the description and understanding of 
this relation. My friend Torstein lfoSSSang and I have for many years at­
tempted to gain insight into the connection between microscopic physics 
and macroscopic phenomena by means of experiments, theory and com­
puter simulations. Much of what I know I have learned through association 
with Torstein. He also contributed to early lecture notes and reports on 
fractals. However, he felt that I should write a monograph. We have also 
had the benefit of working with many talented students. 

This book contains some of the topics I found particularly interesting 
and useful in teaching and in our research. Many more ideas and interesting 
facets of fractals are found in Mandelbrot's books and in the rapidly grow­
ing research literature. I would like to apologize to all colleagues whose 
works have not been cited as my aim has been to write an introduction 
that may be useful for those who want to use fractals and not to write an 
exhaustive review. 

The interesting phenomena that occur in the displacement of fluids 
in porous media became a focus of research in our cooperation with Den 
norske stats oljeselskap als (Statoil). This cooperation has exposed us to 
many questions of practical interest that have quickly evolved into questions 
of basic research. Our research effort and our students have benefited 
from the generous support of VISTA, a cooperative research effort between 

ix 



x PREFACE 

the Norwegian Academy of Science and Letters and Statoil, initiated by 
director Henrik Ager-Hanssen. 

Dr. Per Stokke at Statoil raised many interesting questions and asked 
for several reports on the possible applications of fractals relating to geo­
logical, geochemical and other subjects of direct interest in oil exploration. 
These reports started the process of actually writing this book. Teaching 
a course to our students on the application of fractals pushed the project 
along and raised many new questions. 

Amnon Aharony has encouraged me in writing this book and I have 
learned much from his many constructive remarks. Ivar Giaever read a 
preliminary version and made many penetrating comments and suggestions 
that I have tried to incorporate. I learned much from discussions with Paul 
Meakin. Jens Lothe has commented on several parts of the book, and I 
am also indebted to him as my thesis advisor. Harry Thomas made helpful 
comments on my first writings on the subject. During the summer of 1986, 
I visited Erling Pytte at the IBM Thomas J. Watson Research Center, and 
he suggested many improvements to the book. Benoit Mandelbrot read 
preliminary versions of my book during the summer and we had many 
interesting discussions. He pointed out, with humor and patience, errors 
and misunderstandings, made valuable suggestions and encouraged me in 
many ways. I am grateful to him for his inspiration and help. 

Jan Fr{6yland has contributed much to the analysis of wave-height 
statistics. He has also generated many of the random translation surfaces 
shown in chapter 13. Many of the students J{6ssang and I have in our group 
have contributed directly to this book. Knut J{6rgen Mal{6y has with ingenu­
ity done the experiments on viscous fingering in porous media. U nni Oxaal 
has made experiments on fluid displacement in micromodels of controlled 
geometry. Einar Hinrichsen carried out DLA simulations and also made 
many useful comments on the manuscript. Finn Boger has contributed to 
the analysis of experimental results. He has also developed programs that 
have generated the fractal landscapes and clouds shown in this book. Liv 
FUruberg simulated percolation processes and has contributed many of the 
figures in chapter 7. 

Liv Feder created most of the illustrations that appear in the book. 
She has helped me in many ways, and this book would not have been 
written without her patience and support. 
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Without doubt, this book can be improved. If you have comments or 
suggestions, I would be pleased to have them. 

Jens Feder 
Oslo, Norway 
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FIGURE C.l: The effect of increasing the occupation probability p on a 
160 x 160 quadratic lattice. From top to bottom we have p = 0.58, 0.6 (see 
facing page) and 0.62 above. In each of the three figures the largest cluster 
is white. The other clusters are colored according to decreasing size with 
the colors cyan J red, orange J yellowJ light green J green, turquoise and blue 
in the shades light to dark. The smallest clusters are not visible with this 
coloring scheme. 



FIGURE C.2: (a) Air displacing glycerol at a high capillary number on the 
percolation cluster shown in figure 7.13. (b) The results of numerical simu­
lation of fluid displacement on the same percolation cluster. The different 
colors represent pores invaded by air observed at successive time steps. 
The number of pores invaded by air is 30 - white, 86 - red, 213 - green 
and finally at breakthrough 447 - yellow, for both the experiment and the 
simulation (Oxaal et al., 1987). 



FIGURE C.3: A system of diffusing particles at large scale. The screen is 
150 x 150. The particles connected to the source are green, empty sites 
connected to the sink are turquoise. The particles in isolated clusters (is­
lands) are dark green, isolated empty sites (lakes) are dark blue. Sites in 
the hull are black. 



FIGURE C.4: Fractal landscape with H = 0.75 generated using a scale 
factor r = 112 on a 2049 x 2049 lattice. (a) The central 1024 x 800 portion 
seen from above. (b) The landscape with perspective and curvature. (c) 



The complete landscape seen from above. (d) The complete landscape 
presented as 'clouds.' For a discussion see section 13.4 (Boger et al., 1987). 



b 

FIGURE C.5: Fractal landscapes presented as 'clouds.' (a) H = 0.5 land­
scape (see figure 13.11). (b) H = 0.7 landscape (see figures 13.11 and 
13.13) (Boger et al., 1987). 
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Chapter 1 

Introduction 

The geometry of natural objects ranging in size from the atomic scale to 
the size of the universe is central to the models we make in order to 'under­
stand' nature. The geometry of particle trajectories; of hydrodynamic flow 
lines, waves, ships and shores; of landscapes, mountains, islands, rivers, 
glaciers and sediments; of grains in rock, metals and composite materials; 
of plants, insects and cells, as well as the geometrical structure of crystals, 
chemicals and proteins - in short the geometry of nature is so central 
to the various fields of natural science that we tend to take the geomet­
rical aspects for granted. Each field tends to develop adapted concepts 
(e.g., morphology, four-dimensional spaces, texture, conformation, and dis­
locations) used intuitively by the scientists in that field. Traditionally the 
Euclidean lines, circles, spheres and tetrahedra have served as the basis of 
the intuitive understanding of the geometry of nature. 

Mathematicians have developed geometrical concepts that transcend 
traditional geometry, but unfortunately these concepts have failed in the 
past to gain acceptance in the natural sciences because of the rather ab­
stract and 'pedantic' presentations, and because of warnings that such ge­
ometries were 'dangerous to use'! 

Benoit B. Mandelbrot, with his creative and monumental work, has 
generated a widespread interest in fractal geometry - a concept introduced 
by Mandelbrot himself. In particular he has presented what he has called 
fractals in an unusually inspiring way. His book The Fractal Geometry of 
Nature (1982) is the standard reference and contains both the elementary 
concepts and an unusually broad range of new and rather advanced ideas, 
such as multifractals, currently under active study. The pictures of syn­
thetic landscapes look so real that they are accepted by most to be natural. 
The advent in recent years of inexpensive computer power and graphics has 
led to the study of nontraditional geometrical objects in many fields of 
SCIence. 

1 



2 CHAP ~ 1 • INTRODUCTION 

Mandelbrot has written a large number of scientific papers that deal 
with the geometry of the phenomena observed in many fields of science. He 
has studied the fractal geometry of price changes and salary distributions; 
of the statistics of errors in telephone messages; of word frequencies in 
written texts; of various mathematical objects and of many other subjects. 
He has written three books! on the subject that make his technical papers 
more accessible and that have inspired many to use fractal geometry in 
their own fields: 

1. Les Objets Fractals: Forme, Hasard et Dimension (1975a). 

2. Fractals: Form, Chance, and Dimension (1977). 

3. The Fractal Geometry of Nature (1982). 

The last book is a new edition with spectacular pictures generated using 
the greatly enhanced computer graphics now available. 

The concept of fractals has caught the imagination of scientists in 
many fields and papers discussing fractals in various contexts now appear 
almost daily. Mandelbrot's books are remarkable in several ways. First of 
all, they are cross-disciplinary - he discusses trees, rivers, lungs, water lev­
els, turbulence, economics, word frequencies and many, many other topics. 
He ties all these fields together with his geometrical concepts. He purposely 
has no introduction and no conclusion in order to stress his belief that as 
more work is done in this field, his ideas will reveal further insight into the 
geometry of nature. In fact, he only reluctantly gives a definition of the 
term fractal and he hastens to state that his definition is only tentative! 
Later he withdraws this definition. His books try to convince the reader 
that fractal geometry is important for the description of nature, but be­
come elusive when the reader tries to understand the arguments in detail. 
Mathematical arguments are mixed with anecdotes and historical notes. 
Various topics are mixed throughout the book in a way that is difficult to 
disentangle. However, with patience the interested reader finds an unusual 
spectrum of good ideas, profound remarks and inspiration - these books 
are truly remarkable. 

The most striking illustrations are in color. They show a fractal 
'planet' rising over the horizon of its moon, and mountains, valleys and 
islands that never were. These illustrations, made by R. F. Voss, are based 

1 Mandelbrot (1988) is preparing a new book that also incorporates his papers of 
1967, 1972, 1974, 1985 and 1986 found in the list ofreferences, as well as his other hard­
to-find papers on multifractals. It is to be Volume I of Mandelbrot's Selecta. Additional 
volumes, incorporating the other references, are anticipated and may include the papers 
on R/ S analysis. 
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on algorithms that ensure the fractal nature of the landscapes. The land­
scapes look natural - one must believe that the fractals somehow capture 
the essence of the surface topography of the earth. How these fascinating 
pictures are made is not explained, but Mandelbrot states that 

'implementing the shadows involves great ingenuity; one would 
need tomes to explain every detail. In addition the algorithm is 
very much influenced by the available tools, hence to duplicate 
this work one should have to use exactly the same computer 
equipment 7 (page C8). 

Voss has recently described in some detail the ideas he uses in the gen­
eration of his spectacular pictures (Voss 1985a,b). Some of the computer 
graphics involved in the creation of beautiful fractal objects is described 
in the proceedings of the computer graphics section of the Association 
for Computing Machinery (Siggraph 86 conference proceedings, Computer 
Graphics, edited by D. C. Evans and R. J. Athay, 1986). In these proceed­
ings fascinating fractal trees created by Oppenheimer (1986) are well worth 
studying. 

Peitgen and Richter's new book The Beauty of Fractals (1986) is a 
truly beautiful book exploring the fractal nature of iterative maps and 
of differential equations. Peitgen is also editing The Art of Fractals, A 
Computer Graphical Introduction to appear in 1988. 

In order to gain insight into these types of landscapes we have gen­
erated some landscapes of our own using methods described in chapter 
13. Anyone who tries such calculations will conclude that computational 
shortcuts are necessary and understand why Mandelbrot discusses many 
different possible schemes - 'I have also examined and compared a dozen 
shortcuts that are stationary, and some day I hope to publish the compar­
ison' (Mandelbrot, 1982). We find that simple models of landscapes and 
coastlines can be produced quickly with rather limited computer resources. 
We have learned much from this effort and recommend that the reader try 
to generate some as well. 

In order to provide a basis for the various applications of fractals to 
experimental results we start out in chapter 2 with a discussion of simple 
fractals and of the fractal dimension. The related concept of the scaling or 
similarity dimension is also discussed. 

In chapter 3 the fractal properties of clusters are discussed and ex­
perimental results reviewed. Aggregation of particles has been shown to 
produce fractal clusters. Many experiments and numerical simulations have 
recently explored the properties of aggregation kinetics, gelation and sedi­
mentation. Various experimental techniques have been applied in the study 



4 CHAP. 1 • INTRODuCTION 

of these phenomena and the use of fractal geometry has helped to ratio­
nalize large sets of experimental results. For a recent review see the paper 
by Meakin (1987c). 

Displacement of a fluid in porous media usually results in a displace­
ment front. If the fluid is driven by a fluid of lower viscosity the dis­
placement front is notoriously unstable. Such fronts have been extensively 
studied experimentally and theoretically. It is now clear that displacement 
using a low-viscosity fluid or gas is mathematically analogous to the kinetics 
of an aggregation process which is known to produce fractal geometries. We 
discuss the theoretical background and experimental results in chapter 4. 

Once one leaves the secure ground of conventional geometry a whole 
zoo of fractal dimensions appears. As a preparation we discuss the simple 
example of Cantor sets in chapter 5. In chapter 6 we discuss what happens 
when we consider physical phenomena or distributions on fractals, and we 
present the ideas of fractal measures and multifractals in a discussion of 
simple examples. We then use these ideas in a discussion of some recent 
experimental results on thermal convection and on the dynamics of viscous 
fingering. 

Randomness is an essential ingredient of most natural phenomena. In 
chapter 7 we discuss percolation processes, which provide particularly well 
understood examples of random fractals. We concentrate on the fractal ge­
ometry of percolation processes and proceed to discuss experimental results 
obtained in fluid-fluid displacement. 

Many records of observations exhibit fractal statistics which may be 
analyzed using the empirical RI S analysis introduced by Mandelbrot and 
Wallis (1968) on the basis of puzzling observations by Hurst and presented 
in chapter 8. This analysis gives evidence that many natural records in 
time are fractal. The more detailed discussion of random walks in chapter 
9 provides the tools needed to understand fractal time series, and introduces 
the concept of fractional Brownian motion. 

The analysis of the fractal structure of records in time emphasizes 
the need to distinguish between self-affine and self-similar fractals. It has 
ret:ently become clear that great care has to be taken in order to obtain 
meaningful fractal dimensions for self-affine fractals. Chapter 10 discusses 
some of these difficulties. The discussion of the 'strategy of bold play' 
gives an interesting example of a self-affine curve that is directly related 
to the fractal measures discussed in chapter 6. As an application of the 
RIS statistics to a self-affine record in time I discuss in chapter 11 the 
wave-height statistics of ocean waves. 

The perimeter-area relation for fractal objects is discussed in chap­
ter 12. This discussion forms the basis for an understanding of Love-
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joy's (1982) observation that the surface of clouds has a fractal dimension 
D = 2.34. The fractal dimension has been calculated from 'first principles' 
by Hentschel and Procaccia (1984), who find D in the range 2.37 to 2.41 
for clouds based on a model of turbulent diffusion. Some observations on 
the relation between river length and drainage areas indicate that river 
systems are fractals, as discussed in the last section. 

Fractal surfaces are the subject of chapter 13. The relation between 
fractal curves and surfaces is the basis for our discussion. Defining and 
using random fractal translation surfaces we have made drawings of fractal 
coastal landscapes and coastlines. The successive random addition method 
used by Voss provides an efficient algorithm for the generation of fractal 
surfaces with specified properties. We show a few examples of such surfaces. 

The recent discussion of fractal dimensions based on topographic mea­
surements of surfaces is covered in chapter 14. Also the related 'observation' 
of the fractal dimensions of various environmental data is presented. The 
surfaces of powders and other porous media have recently been shown to 
be fractal, and many of these results are also discussed. The fractal nature 
of surfaces must have implications for catalysis and for the properties of 
porous media. In short the fractal dimension D of a porous substance is a 
property of the material and must in turn determine many of its properties. 

Many highly interesting and important topics are not discussed in this 
book. Dynamical systems, for example, provide cases in which fractals 
arise naturally, and the reader would be well advised to study these topics 
in one of the many books that are now available. Peitgen and Richter's 
(1986) book is a good starting point. Another theme of very active research 
is the dynamics of various processes that occur in fractal geometries. For 
example, the electrical conductivity, noise and mechanical properties of 
percolating systems provide important examples of multifractal behavior. 
A theme that deserves further discussion is the random walk in higher di­
mensions on fractals or with fractal steps. The list goes on and on. Why 
not discuss the fractal structure of turbulence, the formation of galaxies 
and the distribution of fractures? Why not indeed - the research activity 
in this field is huge and growing~ Many interesting topics have been dis­
cussed at a number of conferences: Family and Landau (1984); Pynn and 
Skjeltorp (1985); Stanley and Ostrowsky (1985); Pietronero and Tosatti 
(1986); Pynn and Riste (1987). The selection of the themes presented here 
has been guided mostly by my own research interests and by the questions 
and demands of my students. The subject is changing very fast, with in­
teresting contributions and applications being published daily. Also, many 
of the themes discussed in Mandelbrot's books have not even been touched 
upon here. His books remain the main reference and the reader of this 
book should explore them for new and interesting ideas. 



Chapter 2 

The Fractal Dimension 

2.1 The Coast of Norway 

How long is the coast of Norway? Take a look at figure 2.1. On the scale of 
the map the deep fjords on the western coast show up clearly. The details 
encountered moving northeast along the coast from the southern tip are 
more difficult to resolve, but I can assure you that the maps I use when 
sailing in that area show structures quite similar to those of the west coast. 
In fact when sailing there you find rocks, islands, bays, faults and gorges 
that look much the same but do not show up even on my detailed maps. 
Before answering the question we have to decide on whether the coast of 
the islands should be included. And what about the rivers? Where does 
the fjord stop being a fjord and become a river? Sometimes this is an 
easy question and sometimes not. However, even after we have decided 
on all these questions we have a difficulty. I could walk a divider with an 
opening corresponding to 6 km along the coastline on the map and count 
the number of steps, N(6), needed to move from one end of the map to 
the other. Being in a hurry I would choose such a large opening of the 
divider that I would not have to bother about even the deepest fjords and 
estimate the length to be L = N(6) ·6. If objections were raised I would 
use a somewhat smaller opening 6 and try again. This time the large fjords 
would contribute to the measured length but the southeastern coast would 
still be taken in a few steps. For a really serious discussion I would have to 
get the kind of maps neighbors use when they settle questions of where the 
fence should go, or how far up the river the fishing rights extend. Clearly 
there is no end to this line of investigation. Every time we increase the 
resolution we find an increase in the measured length of the coastline. Also 
in using the divider we have problems with the islands and rivers. An 
alternative method of measuring the length of the coastline is to cover the 

6 



SEC. 2.1 • THE COAST OF NORWAY 7 

FIGURE 2.1: The coast of the southern part of Norway. The outline was 

traced from an atlas and digitized at about 1800 x 1200 pixels. The square 

grid indicated has a spacing of f> i"J 50 km. 
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FIGURE 2.2: The measured length of the coastline shown in figure 2.1, as 
a function of the size 6 of the 6 x 6 squares used to cover the coastline on 
the map. The straight line in this log-log plot corresponds to the relation 
L( 6) = a . 61- D , with D ~ 1.52. 

map with a grid, as indicated in a corner of figure 2.1. Let the square cells 
of the grid be 6 x 6. The number N (6) of such squares needed to cover the 
coastline on the map is roughly equal to the number of steps used when 
walking a divider with an opening () along the coast. Decreasing () again 
gives a large increase in the number of cells needed to cover the coastline. 
If the coast of Norway has a well defined length L N, then we expect that 
the number of steps taken using the divider, or the number of square cells 
needed to cover the coast, N (6), will be inversely proportional to the 6, so 
that L(6) = N(6) x 6 approaches a constant LN as we make 6 smaller and 
smaller. However, this is not the case. 

Figure 2.2 shows how the measured length increases as the 'yardstick' 
length, 6, is reduced. This log-log plot shows that the measured length 
of the coastline shows no sign of reaching a fixed value as C is reduced. In 
fact, the measured length is nicely approximated by the formula 

L( 6) = a . 61- D . (2.1) 

For an ordinary curve we would expect a to be LN, at least for small 
enough 6, and the exponent D should be equal to one. We find, however, 
that D ~ 1.52. The coastline is a fractal with a fractal dimension D. We 
discuss this in more detail in section 2.3. 

In Mandelbrot's (1982) book is a chapter entitled 'How Long Is the 
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FIGURE 2.3: The length of coastlines as a function of yardstick length 
(Mandelbrot, 1982). 

Coast of Britain?' He analyzed data collected by Richardson, and figure 2.3 
is a reproduction of his figure showing the apparent length of various coast­
lines and boundaries (Mandelbrot, 1967). They all fall on straight lines in 
the log-log plot. The slope of the lines in this log-log plot is 1 - D, 
where D is the fractal dimension of the coastline. The coast of Britain has 
D '" 1.3. Mandelbrot added the results for a circle in his figure, and he 
finds Dcircle = 1, as was expected. 

2.2 The Schwarz Area Paradox 

Measuring an area is not always easy in practice. Consider the surface of 
the cylinder (radius R and height H) illustrated in figure 2.4; its area is 
A = 211"" RH . However, if we try to measure the surface area of a given 
cylinder in practice using rulers, we would have to triangulate the surface 
in some way, for instance as shown in figure 2.4. We divide the surface into 
m bands and n sectors as indicated in the figure, and obtain an estimate of 
the surface area as the sum A~ of the areas of all the small triangles. By 
making this division finer and finer, that is, letting n - 00 and m - 00, 

we expect that A~ - A. This is not always correct. The area of all the 
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FIGURE 2.4: The vertical surface of a cylinder of radius R and height H is 
21r RH. The surface is approximated by a triangulation as illustrated. 

triangles may be written as 

----+ 
n-oo 

1r RH ',;' sin ;;. { 1+ cos f" v'1+ (1i) 2 ':,:,2 (2: sin ;;.). } 

1rRH {1 + '1'1 + {R/H)2{1r2m/n2 )2} . 
(2.2) 

Here the first term corresponds to triangles of the type marked al in the 
figure. The second term with the square-root corresponds to triangles of 
the type marked a2. We see that if m/n2 -.. 0, as both m and n increase, 
then we find indeed that the triangulated area approaches the expected 
result. However, if we choose to use a triangulation where m = An2 , then 
we find that A.:1 > A, and we may in fact get arbitrarily large values for A.:1' 
If we choose m = nf:J, then we find A.:1 ~ nf:J- 2 for f3 > 2. The triangulation 
area then diverges as we make the individual triangles smaller and smaller. 
Instead of getting a better approximation by a reduction of the triangle size 
we obtain a worse approximation. Many other ways of triangulation lead 
to similar problems. This is the Schwarz area paradox. For a discussion 
see Mandelbrot (1986). It is easy to see what happens. We find that the 
approximate triangulation surface becomes more and more corrugated as 
the ratio m/n2 increases, and in the limit the triangles of the type marked 
a2 are practically perpendicular to the cylinder surface. 

One may object that we run into trouble only with a bad choice of the 
triangulation. However, how should one select a 'good' triangulation when 
we want to estimate the area of a more complex or rough surface? One 
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finds that one is better off using the methods discussed in the next section. 
They work in the classical and easy case and in the more difficult cases of 
'monster' curves, surfaces and volumes. 

2.3 The Fractal Dimension 

Mandelbrot (1982) offers the following tentative definition of a fractal: 

A fractal is by definition a set for which the Hausdorff-Besicovitch 
dimension strictly exceeds the topological dimension (page 15). 

This definition requires a definition of the terms set, Hausdorff-Besicovitch 
dimension (D) and topological dimension (DT), which is always an integer. 
For the present purpose we find that a rather loose definition of these terms 
and illustrations - using simple examples - is more useful than the more 
formal mathematical discussions available. In fact Mandelbrot (1986) has 
retracted this tentative definition and proposes instead the following l : 

A fractal is a shape made of parts similar to the whole in some 
way. 

A neat and complete characterization of fractals is still lacking (Mandel­
brot, 1987). The point is that the first definition, although correct and pre­
cise, is too restrictive. It excludes many fractals that are useful in physics. 
The second definition contains the essential feature that is emphasized in 
this book, and seen in experiments: A fractal looks the same whatever 
the scale. Look at some nice cumulus clouds, for example. They consist 
of big heaps with smaller bulges that have smaller bumps with bumps on 
them and so on down to the smallest scale you can resolve. In fact, from a 
picture showing only the clouds one cannot estimate the size of the clouds 
without extra information. 

The fractals we discuss may be considered to be sets of points em­
bedded in space. For example, the set of points that make up a line in 
ordinary Euclidean space has the topological dimension DT = 1, and the 
Hausdorff-Besicovitch dimension D = 1. The Euclidean dimension of space 
is E = 3. Since D = DT for the line it is not fractal according to Mandel­
brot's definition, which is reassuring. Similarly the set of points that form 
a surface in E = 3 space has the topological dimension DT = 2, and D = 2. 
Again an ordinary surface is not fractal independent of how complicated it 
is. Finally a ball or sphere has D = 3 and DT = 3. These examples really 
serve to define some of the types of sets of points we discuss. 

1 Mandelbrot, priva.te communication, 1987. 
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FIGURE 2.5: Measuring the 'size' of curves. 

The concept of a distance between points in space is central to the 
definition of the Hausdorff-Besicovitch dimension and therefore of the frac­
tal dimension D. How do we measure the 'size' of a set S of points in 
space? A simple way to measure the length of curves, the area of surfaces 
or the volume of an object is to divide space into small cubes of side 6 as 
illustrated in figure 2.5. We might use small spheres of diameter 6 instead. 
If we center a small sphere on a point in the set then all points that are at a 
distance r < !6 from the point at the center are covered by the sphere. By 
counting the number of spheres needed to cover the set of points we obtain 
a measure of the size of the set. A curve can be measured by finding the 
number N (6) of line segments of length 6 needed to cover the line. For an 
ordinary curve we have N (6) = Lo/6, of course. The length of the curve is 
given by 

In the limit 6 --t 0, the measure L becomes asymptotically equal to the 
length of the curve and is independent of 6. 

We may choose to associate an area with the set of points defining a 
curve by giving the number of disks or squares needed to cover the curve. 
This number of squares is again N(6), and each square has an area of 62 • 

The associated area is therefore given by 

Similarly we may associate a volume, V, with the line as follows: 
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FIGURE 2.6: Measuring the 'size' of a surface. 

Now, for ordinary curves both A and V tend to zero as 6 vanishes, and the 
only interesting measure is the length of the curve. 

Consider next a set of points that define a surface as shown in fig­
ure 2.6. The normal measure is the area A, and we have 

Here one will find that for an ordinary surface the number of squares needed 
to tile it is N(6) = Ao/62 in the limit of vanishing 6, where Ao is the area 
of the surface. 

We may associate a volume with the surface by forming the sum of the 
volumes of the cubes needed to cover the surface: 

As expected, this volume vanishes as 6 -- O. 
Now, may we associate a length with a surface? Formally we may 

simply take the measure 

which diverges for 6 -- O. This result is reasonable since it is impossible 
to cover a surface with a finite number of line segments. We conclude that 
the only useful measure of a set of points defined by a surface in three­
dimensional space is the area. 

We shall see that one may easily define sets of points that are curves 
which twist so badly that their length is infinite, and in fact there are 
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curves (Peano curves) that fill the plane. Also there are surfaces that fold 
so wildly that they fill space. In order to discuss such strange sets of points 
it is useful to generalize the measure of size just discussed. 

So far, in order to give a measure of the size of a set of points, S, in 
space we have taken a test function h( 6) = I( d)6d - a line, square, disk, 
ball or cube - and have covered the set to form the measure Md = L: h(6). 
For lines, squares and cubes the geometrical factor I( d) = 1. We have 
I = 1r / 4 for disks, and I = 1r /6 for spheres. In general we find that, as 
6 -+ 0, the measure Md is either zero or infinite depending on the choice of 
d - the dimension of the measure. The Hausdorff-Besicovitch dimension 
D of the set S is the critical dimension for which the measure M d changes 
from zero to infinity: 

~ d d {O d>D' Md = L..t I(d)6 = "Y(d)N(6)6 ---+' , 
6-0 00, d < D . 

(2.3) 

We call Md the d-measure of the set. The value of Md for d = D is often 
finite but may be zero or infinite; it is the position of the jump in Md 
as a function of d that is important. Note that this definition defines the 
Hausdorff-Besicovitch dimension D as a local property in the sense that it 
measures properties of sets of points in the limit of a vanishing diameter 
or size 6 of the test function used to cover the set. It also follows that the 
fractal dimension D may depend on position. Actually there are several 
fine points that have to be considered. In particular, the definition of the 
Hausdorff-Besicovitch dimension allows for a covering of the set by 'balls' 
that are not all the same size, but have diameters less than 6. The d­
measure is then the infimum: roughly the minimal value obtainable in all 
possible coverings. See section 5.2 for examples. A mathematical treatment 
is found in the book by Falconer (1985). 

The familiar cases are D = 1 for lines, D = 2 for planes and surfaces, 
and of course D = 3 for spheres and other finite volumes. As we shall 
see in numerous examples below there are sets for which the Hausdorff­
Besicovitch dimension is noninteger and is said to be fractal. 

The definition (2.3) of the fractal dimension can be used in practice. 
Consider again the coastline shown in figure 2.1, which we have covered 
with a set of squares with edge length 6, with the unit of length taken 
to equal the edge of the frame. Counting the number of squares needed 
to cover the coastline gives the number N(6). Now we may proceed as 
implied by equation (2.3) and calculate Md(6), or we may simply go ahead 
and find N(6) for smaller values of 6. Since it follows from equation (2.3), 
that asymptotically in the limit of small 6 

1 
N(6)"'" 6D ' (2.4) 
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FIGURE 2.7: The number of 'boxes' of size 6 needed to cover the coastline 
in figure 2.1 as a function of 6. The straight line in the log-log plot is a fit 
of N(6) = a6-D to the observations. The fractal dimension D ~ 1.52. 

we may determine the fractal dimension of the coastline by finding the slope 
of In N (6) plotted as function of In 6. The resulting plot for the coastline 
shown in figure 2.1 is presented in figure 2.7. We find approximately D ~ 
1.5. The dimension D, determined from equation (2.4) by counting the 
number of boxes needed to cover the set as a function of the box size, is 
now called the box counting dimension or box dimension. 

2.4 The Triadic Koch Curve 

Figure 2.8 shows the construction of the triadic Koch curve. The triadic 
Koch curve is one of the standard examples used to illustrate that a curve 
may have a fractal dimension D > 1. 

The construction of the Koch curve starts with a line segment of unit 
length L(1) = 1. This starting form is called the initiator and may be 
replaced by a polygon such as an equilateral triangle, a square or some 
other polygon. The initiator is the O-th generation of the Koch curve. The 
construction of the Koch curve proceeds by replacing each segment of the 
initiator by the generator shown as the curve marked n = 1 in figure 2.8. 
Thus we obtain the first generation, which is a curve of 4 line segments 
each of length lis. The length of the curve is now L( lis) = 4/3, The next 
generation is obtained by replacing each line segment by a scaled-down 
version of the generator. Thus in the second generation we have a curve 
consisting of N = 42 = 16 segments each having length 6 = 3-2 = 1/9, and 
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FIGURE 2.8: Construction of the triadic Koch curve. 
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the length of this curve is L(I/9) = (4/a)2 = 16/9. By applying a reduced 
generator to all segments of a generation of the curve a new generation is 
obtained. Such a curve is called a prefmctal. 

For once, let us follow the details of how the expression for D is ob­
tained. The length of the n-th generation prefractal is given by 

L(6) = (4/3t . 

The length of each of the small line segments is 

6 = 3-n • 

By noting that the generation number n may be written in the form 

n = -In 6/ In 3 , 

we find that the length may be expressed as follows: 

( ) _ ( / )n _ (_ In 6 [In 4 - In 3]) _ d-D L6-43 -exp In3 -0. 

This result has the form of equation (2.1) with 

D = In 4/ln 3 -- 1.2628. 

(2.5) 

The number of segments is N(6) = 4n = 4-1n6/ln3 and may be written 
in the form 

N(6) = 6-D • (2.6) 

We shall see that D is the fractal dimension of the triadic Koch curve. 
First we note that the length of any generation of the Koch construction is a 
normal curve with a finite length. Mandelbrot calls such curves prefractals. 
However, as we let the number of generations increase 6 tends to zero and 
the length of the curve diverges. Clearly the set of points defined in the 
limit of an infinite number of iterations of the Koch prescription is not a 
curve for which length is a useful measure. If, however, we choose to use 
the test-function h( 6) = 6d , we find the d-measure 

Md = Lh(6) = N(c5)h(6) = c5- D 6d . 

We see that the measure Md remains finite and equal to 1 only when the 
dimension d of the test function h( 6) equals D. We conclude that the 
critical dimension and therefore the Hausdorff-Besicovitch dimension for 
the triadic Koch curve is given by D = In 4/ln 3. Now, at each stage of the 
construction the Koch prefractals may be stretched to form a straight line, 
and therefore we conclude that the topological dimension of the triadic 
Koch curve is DT = 1. Since the Hausdorff-Besicovitch dimension D for 
the Koch curve exceeds its topological dimension DT, we conclude that the 
Koch curve is a fractal set with the fractal dimension D = In 4/ln 3. 
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2.5 Similarity and Scaling 

A line is a special set of points in space. If we change the length scale, 
we recover the same set of points. In addition we may translate the points 
of the set and recover the same set of points. The line is invariant with 
respect to translation and scaling - we say that the line is self-similar. 

To be more precise, let us specify points in space by giving the Carte­
sian coordinates x = (Xl, X2, X3). A line through the point Xo, in a direction 
given by a = (al,a2,a3), is the set S of points determined by 

x = Xo + t a, -00 < t < 00. 

Here the parameter t is any real number. If we change the length scale by 
the same factor r for all of the components of x, then points x map into 
new points x' = rx = (rxl, rX2, rX3) and we obtain a new set of points 
r( S), given by 

x' = r(xo +ta) 
= Xo + t' a - (1 - r) Xo. 

(2.7) 

Here t' = rt is again any real number. If we move the new set of points, 
r(S), by translating all the points an amount (1- r) xo, the original set of 
points, S, is recovered - the line is invariant under change of length scale. 
Also the line is invariant under the translations x --+ x + a . n, with n any 
real number. 

Using the same type of arguments one concludes that a plane is in­
variant under translations in the plane, and under change of length scales. 
Finally the three-dimensional space is invariant under translations in any 
direction, and under change of length scales. 

Other sets of points cannot have these strong symmetries of transla­
tional and scaling invariance. A circle is not invariant under translation or 
under a change of scale - but it is invariant under rotations around its 
center. Fractals must give up some or all of these simple invariances. 

It is useful to consider bounded sets such as a finite piece of a line. 
A finite line segment does not have translational symmetry - moving it 
always results in a new set of points. However, if we change lengths by the 
scale factor r less than one, we generate a new set of points S' = r(S) that 
is a small piece of a line. This line segment may be translated to cover a 
part of the original line S. If we have chosen r properly, we may cover the 
original line once with N nonoverlap ping segments. We say that the set S 
is self-similar with respect to the scaling ratio r. For a line segment of unit 
length we may choose r(N) = lIN, with N any integer. A rectangular 
piece of a plane may be covered by scaled-down versions if we change the 
length scales by r(N) = (1IN)l/2. Similarly, a rectangular parallelepiped 
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FIGURE 2.9: Construction of the quadratic Koch curve. 

may be covered by scaled versions if we use r(N) = 1/ N 1/ 3 . In general we 
use a scale factor given by 

r(N) = (I/N)l/d . (2.8) 

The similarity dimension, d, is 1, 2 and 3 for lines, planes and cubes 
respectively. 

Now, consider the Koch curve in figure 2.8. With a scale factor r = I/a, 
we obtain the first third of the whole curve. We need N = 4, such pieces to 
cover the original set by repeated translations and rotations of this scaled­
down piece. We can also scale with a factor r = (I/a)n, using N = 4n pieces 
to cover the original set. For the triadic Koch curve we see that the scale 
factor r( N) satisfies 

r(N) = (I/N)I/D, (2.9) 

with the similarity dimension d, equal to the Hausdorff-Besicovitch dimen­
sion D = In4/ln3. 

In general we define the similarity dimension Ds from the equation 
above as 

Ds = -InN /lnr(N). (2.10) 

The Hausdorff-Besicovitch dimension D equals Ds for self-similar fractals 
- and we drop the index s for such fractals. 

This similarity dimension is easy to determine for various fractals ob­
tained by variants of the Koch construction. Consider a Koch prefractal 



20 

~' 
/ ' , , A 
~ 

CHAP. 2 • THE FRACTAL DIMENSION 

FIGURE 2.10: Triangle sweep with D = 1.944. For the first few genera­
tions we also show the previous generation as dashed lines. Each of the 
generations shown is magnified so that the structure of the curve becomes 
apparent. 

constructed starting with the unit square as the initiator and the generator 
consisting of N = 8 pieces each of length r = 1/4, as shown in figure 2.9. 
This curve has the similarity dimension D = -In 8/ln 1/4 = 3/2, and again 
it equals the Hausdorff-Besicovitch dimension of the set obtained after an 
infinite number of iterations. Note, however, that since we use the unit 
square as the initiator we find that the figure as a whole is not scaling. 
Each piece of the 'coastline' is self-similar, but when we scale the whole 
figure by r, we find a smaller version of the original, and the original may 
not be covered using these smaller sets. The point is that fractal scaling 
behavior is obtained only in the limit 8 --+ 0, and we conclude that the 
fractal nature of Koch curves is strictly speaking a local property. The 
Koch construction shown in figure 2 .. 10 is interesting. The curve does not 
intersect itself but may actually be made to fill a right isosceles triangle. 
The initiator is the unit interval, and the generator shown in figure 2.10 
consists of N = 2 pieces of length r = 0.99 . 1/V2. We have chosen the 
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FIGURE 2.11: The Harter-Heightway dragon. D = 2. 
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factor 0.99 to make it easier to see the structure of the curve, since with 
r = 1/../2, each generation is simply a piece of square graph paper. 

The final fractal set defined by this construction has the dimension 
D = -In 2/ln(0.99/v'2) = 1.944. As seen in the figure, the generator 
is actually applied in two versions: one that displaces the line segment 
midpoint to the left, and one that displaces the midpoint to the right. 
Also each new generation of prefractals starts with alternating left and 
right generators. In the figure each new generation is magnified to make 
the segments of a given length so the structure of the curve can be seen 
without loss of resolution. 

Now let us change the rules of construction slightly: Let the first 
application of the generator displace the midpoint of the generating line 
to the left. Each following generation starts with the generator to the 
right, and thereafter right and left midpoint displacements alternate as 
subsequent midpoints are displaced. The first few generations and the 
11th generation of the process are shown in figure 2.11. The limiting fractal 
curve is called the Harter-Heightway dragon. 
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FIGURE 2.12: Modified triangle sweep, D = 2. The generator shown in 
the upper left corner covers the unit interval and scales with two ratios 
T1 = 2/-15 and T2 = 1/-15. 

If we use the generating rule for the triangle sweep but instead use 
the generator shown in figure 2.12, a self-intersecting plane-filling curve 
results. The 10th generation of the construction is shown in figure 2.12. 
The generator breaks the unit interval into two pieces that form an angle of 
900 • The long piece is scaled by the ratio T1 = 2/-15, and the second piece 
is scaled by a different scale factor T2 = 1/-15. For this case we cannot 
use equation (2.10) to determine the similarity dimension. Mandelbrot 
determines the similarity dimension D as the dimension that makes 

(2.11) 

For the present case we find D = 2. Note that it is true, but is not proven 
here, that this dimension equals the Hausdorff-Besicovitch dimension of the 
fractal set. Also, in using equation (2.11) we should really discuss how to 
deal with the overlaps. There are many subtle points to consider once one 
leaves the simplest fractals. 

2.6 Mandelbrot-Given 
and Sierpinski Curves 

The Koch construction shown in figure 2.13 is due to Mandelbrot and Given 
(1984). The generator for this curve divides the line-segment into pieces of 
length T = 1/3 and adds a loop consisting of three pieces; in addition two 
branches are appended. 



SEC. 2.6 • MANDELBROT-GIVEN AND SIERPINSKI CURVES 23 

FIGURE 2.13: An implementation of the Mandelbrot-Given curve. Note 
that the height of the generator has been reduced slightly so that the 
structure of the curve becomes apparent. The fractal dimension is 
DB = In 8/ In 3 = 1.89 ... Mandelbrot and Given (1984) also describes 
random variants of this curve. 

Mandelbrot and Given used this and related curves as models of the 
percolation clusters to be discussed in chapter 7. The curve is interesting 
in that it has loops of all possible sizes and also branches of all possible 
lengths. The branches and loops are themselves decorated with loops and 
branches and so on. In each iteration, from one generation of the prefractal 
to the next, the generator replaces each line segment in the prefractal by 
N = 8 segments that have been scaled down by the ratio r = 1/3. Using the 
expression (2.10) for the similarity dimension we conclude that the fractal 
dimension of the Mandelbrot-Given curve is D = In 8/ In 3 = 1.89 .... 

Consider the curve to be made of an electrically conducting material 
so that a current could be made to flow from the left-hand end to the 
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FIGURE 2.14: Construction of a Mandelbrot-Given curve without branches. 
This curve is obtained using a generator with a single loop. The fractal 
dimension is DB = In 6/ In 3 = 1.63 .... 

right-hand end of the curve. Clearly there would be no flow in any of the 
branches that result from the two vertical line segments in the generator. 
The current is confined to :flow on the backbone, which is the shape obtained 
by pruning all the branches that are connected to the original straight line 
path (the initiator) by only a single bond. If we ignore all the branches 
then we obtain the curve shown in figure 2.14 (In this implementation 
the generator is applied in directions that prevent the corners of the loops 
from touching). The fractal dimension of this curve, which has no 'dangling 
ends,' is DB = In 6/ In 3 = 1.63 ... since the generator replaces each line 
segment by N = 6 line segments scaled down by a factor r = 1/3. At 
how many places may we cut a single bond (singly connected bonds) and 
thereby disconnect the two ends of the initiator? In each application of the 
generator we generate N = 2 singly connected bonds and therefore these 
bonds form a set of points that has the fractal dimension Dsc = In 2/ In 3 = 
0.63 .... 

The Mandelbrot-Given curves contain many interesting geometrical 
features, which are not captured by the fractal dimension of the curve as 
a whole. In fact, such subsets of the curve as the backbone, the singly 
connected bonds and others are also fractal sets with their own fractal 
dimensions. It has recently become clear that many physical processes 
select in a natural way subsets of the structures on which they occur, and 
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FIGURE 2.15: Construction of the triangular Sierpinski gasket. The ini­
tiator is a filled triangle. The generator eliminates a central triangle as 
shown. The fourth generation of the prefractal is shown to the right. The 
fractal curve obtained in the limit of an infinite number of generations has 
the fractal dimension D = In 3/ In 2 = 1.58 .... 
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FIGURE 2.16: Construction of the Sierpinski carpet. The initiator is a 
square and the generator (shown on the left-hand side) is made of N = 8 
squares. They are obtained by contractions of ratio r = 1/3. The right-hand 
side of the figure shows the fourth construction stage. The similarity di­
mension is D = In 8/ In 3 = 1.89 .... 

therefore many fractal dimensions are needed in the discussion of these 
processes (see chapter 6 for a discussion). 

Another construction (see Mandelbrot, 1977, 1982) that creates a 
curve with loops of all sizes is the Sierpinski gasket shown in figure 2.15. 
In each application of the generator a filled triangle is replaced by N = 3 
triangles that have been scaled down by the factor r = 1/2 and therefore 
equation (2.10) shows that the similarity dimension for is D = In 3/ In 2 = 
1.58.... A related curve, the Sierpinski carpet, is shown in figure 2.16. 
An infinite number of generations of the prefractals leaves a fractal curve. 
The area (black) visible in the prefradals vanishes in the final fractal curve, 
while the total perimeter of the holes in the Sierpinski carpet is infinite. 

The Sierpinski curves have been used as models for many physical 
phenomena. Gefen et al. (1980) reported the first systematic study of 
the critical phenomena that occur near phase transitions in spin systems 
carried by self-similar fractal lattices. In an interesting experiment Gordon 
et al. (1986) measured the superconducting-to-normal phase transition 
temperature Te(H) as function of the applied magnetic field H of a sample 
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of an aluminum film with the structure of a tenth generation Sierpinski 
gasket prefractal. The phase-boundary Te(H) is a self-similar fractal curve 
and is in excellent quantitative agreement with theoretical predictions. 

2.7 More on Scaling 

A different point of view is often useful in discussing scale invariance. Con­
sider the Koch curve in figure 2.8 to be the graph of a function J(t). 
The graph is the set of points (x!, X2) in the plane given by the relation 
(xt, X2) = (t, J(t». With a scaling ratio A = r = (1/3)n for n = 0,1,2 ... , 
it is clear that the triadic Koch curve has the property 

J(At) = A a J(t), 

with the scaling exponent a = 1. Note that for the Koch curve we have that 
J(t) is not single-valued, but the scaling relation above still holds for any 
point in the set. The same type of construction may be used on functions 
defined over all real positive numbers. For example, the power law function 
J(t) = bta , satisfies the homogeneity relation 

J(At) = Aa J(t), (2.12) 

for all positive values of the scale factor A. Functions that satisfy this 
relation are said to be scaling. Homogeneous functions are very important 
in the description of the thermodynamics of phase transitions. Much of 
the progress in recent years in the understanding of critical phenomena 
near second-order phase transitions can be summarized by stating that 
such systems have a critical part of their free energy :F, which satisfies the 
scaling form 

(2.13) 

Here, t = ITe - TI/Te is the relative temperature measured from the phase 
transition temperature Te, and a is now the specific heat critical expo­
nent. Note that choosing A so that At = 1 (which is permissible since 
equation (2.13) is valid for any value of A) gives for the critical part of 
the free energy the result :Fe(t) = t 2- a:Fc(1). Using the thermodynamic 
definition of the specific heat C = -T82 :F /8T2 , we find that the specific 
heat behaves for t -+ 0 as C - t- a , consistent with experimental results. 
Similar scaling behavior describes the statistical properties of percolation 
near the percolation threshold; see chapter 7 for a discussion. The modern 
renormalization group theory of critical phenomena explains why the free 
energy has the scaling form and one may calculate the critical exponents. 

Of course, the power-law function and many other functions that ex­
hibit scaling are not fractal curves. However, scaling fractals have nice 
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scaling symmetry, and most of the fractals discussed by Mandelbrot are 
scaling in some sense. He points out that scaling fractals may be used in 
the description of nature as an approximation - much in the same way we 
so far have used lines, planes and other smooth surfaces to describe shapes 
in nature. It is striking how much may be achieved just with scaling frac­
tals, and a thorough study of their properties is certainly rewarding. 

2.8 The Weierstrass-Mandelbrot Function 

As an example of a scaling fractal curve, we consider the Weierstrass­
Mandelbrot fractal function Wet) defined by (Mandelbrot, 1982): 

00 (1 _ eib"t)eicf>" 

Wet) = L: b<2-D)n • (2.14) 
n=-oo 

It should be noted that Wet) depends on b in a trivial way since b only 
determines how much of the curve is visible for a given range of t. The 
parameter D must be in the range 1 < D < 2, and <Pn is an arbitrary 
phase - each choice of <Pn defines a specific function Wet). This function 
is continuous, but has no derivative at any point! A simple version is 
obtained by setting <Pn = O. The Weierstrass-Mandelbrot cosine fractal 
function is then the real part: 

G(t) = ~ Wet) = ~ (1- cos bnt) 
L.J b<2-D)n (2.15) 

n=-oo 

This function has been discussed by Berry and Lewis (1980). The 
function is believed to be fractal with dimension D. It is known to have D 
as a box dimension, but perhaps not as Hausdorft'-Besicovitch dimension. 
Recently Mauldin (1986) proved that the fractal dimension D(Wb) of the 
Weierstrass-Mandelbrot function satisfies the following bounds: 

Here there is a constant B large enough such that the relation is fulfilled 
for large enough b. We have evaluated the function for a few values of 
the parameters in the 'time' interval 0 < t < 1, as shown in figure 2.17. 
The function is reasonably smooth for low values of D, but as D increases 
toward 2 it fluctuates wildly and one is reminded of noise in electronic 
circuits. This 'noise' is superimposed on an increasing trend. The function 
G(t) is scaling with a homogeneity equation given by 

G(bt) = b2- D G(t). (2.16) 



28 

.. 

3 

,.. 
e 
u 

2 

0 

7 

6 

5 
,.. .., 
'" u .. 

3 

2 

0 

15 

,.. 10 .., 
'" u 

5 

o 

a 

0.0 0.2 

b 

0.0 0.2 

0.0 0.2 

CHAP. 2 • THE FRACTAL DIMENSION 

o ... 0.6 

t 

O ... 0.6 

t 

o. " 0.5 

t 

o - 1.2 
b - 1.5 

O. B 

o - 1.5 

b - 1.5 

O. B 

o - 1. B 
b - 1.5 

o. B 

1.0 

1.0 

1.0 

FIGURE 2.17: The Weierstrass-Mandelbrot fractal function G(t) with 
b = 1.5. (a) D = 1.2. (b) D = 1.5. (c) D = 1.8. 
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FIGURE 2.18: The Weierstrass-Mandelbrot cosine function with D = 1.8 
and b = 1.5. (a) 0 <t< 1. (b) 0 <t < b-4 • (c) The curve in (b), rescaled 
to the range 0-1. 
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Therefore, if we know the function in some range of t, we may deduce 
the function for any t. As an example compare the function G(t) with 
b = 1.5 and D = 1.8, shown in figure 2.18a, to the same function evaluated 
in the range 0 < t < b-4 , as shown in figure 2.18b. Clearly the functions 
look similar. In fact, using equation (2.16), it follows that if we replot 
the curve in figure 2.18b by replacing t by b4t and G(t) by b4(2-D)G(t), 
as shown in figure 2.18c, the result is the same as the function shown in 
figure 2.18a. This explicitly exhibits the scaling property of the function 
G(t). 

It is important to note that the graph of the function G(t) is not self­
similar; it is self-affine since we use different scale factors r in the t-direction 
and in the G-direction. See chapter 10 for a more detailed discussion. 

The Weierstrass-Mandelbrot function can be used to generate random 
fractal curves by choosing the phase cPn at random in the interval (0,211"). 
Some such functions have been discussed by Berry and Lewis (1980). For 
a recent discussion of the Weierstrass-Mandelbrot function see also Voss 
(1985a). 



Chapter 3 

The Cluster Fractal Dimension 

The definition of the Hausdorff-"Besicovitch dimension D in equation (2.3), 
and therefore of the fractal dimension for a set of points, requires the 
diameter 6 of the covering sets to vanish. In general, physical systems 
have a characteristic smallest length scale such as the radius, Ro, of an 
atom or molecule. In order to apply the ideas of the previous chapter, 
replace a mathematical line by a linear chain of 'molecules' or monomers. 
As illustrated in figure 3.1, we replace a two-dimensional set of points by 
a planar collection of monomers, and a volume by a packing of spheres. 
The number of monomers in a chain of length L = 2R is 

For a collection of monomers that form a circular disk, we have 

Here the number density is p = 7r/2V3, for closely packed spheres. For the 
three-dimensional close packings of spherical monomers into a spherical 
region of radius R, the number of monomers is given by 

N = p(R/Ro)3, 

where now the number density is p = 7r /3-/2. These relations apply only 
in the limit R/ Ro > 1, because the circular shape of the disk perimeter 
and the spherical surface of the ball can only approximately be covered 
by the monomers. For the three cases just discussed we may write the 
asymptotic form for the relation between the number of particles and the 
'cluster' size measured by the smallest sphere of radius R containing the 
cluster as follows: 

(3.1) 

31 
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FIGURE 3.1: Simple packings of spheres. 

In this n umber-radius relation D is the cluster dimension. Since every 
monomer has the same mass one often interprets N as the mass and p as 
the mass density, and therefore the cluster dimension is often called the 
mass dimension. 

The density, p, depends on how the monomers are packed. For in­
stance, if spheres are packed at random into a volume, then the density 
is reduced from p = 1r/3V2 = 0.7405, to 0.637. For other shapes of the 
clusters p includes factors that take into account the shape of the cluster. 
For example, for an ellipsoid of revolution with an axial ratio bfa, we have 
p = ~11"/3V2, for dense packings of spheres. The cluster dimension, D, on 
the other hand, does not depend on the shape of the cluster, or on whether 
the packing of monomers is a close packing, a random packing or just a 
porous packing with a uniform distribution of holes. 

It is important to realize that the dimension D, defined by equa­
tion (3.1), may be noninteger, i.e., fractal. To illustrate this point we 
return to a discussion of the triadic Koch curve. The construction of the 
triadic Koch curve in figure 2.8 consists of repeatedly using the generator 
to break up line segments into smaller pieces. A complementary point of 
view is to consider each prefractal to be a collection of monomers - each 
monomer representing the generator. In figure 3.2, this method of con­
struction is illustrated. The radius of the monomer, i.e., the generator, is 
Ro = 1/-/3 if the generator spans the unit interval, as usual. The generator 
itself is the smallest cluster, or the starting generation in a cluster growth 
process. The first generation contains N = 4 monomers and has a radius 
R = 3Ro. In the next generation we have N = 42 = 16 monomers, and 
a radius R = 32 Ro = 9Ro for the cluster. In the n-th generation we have 
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~ 

FIGURE 3.2: Triadic Koch clusters. 
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N = 4n and R = 3n Ro. It follows that the triadic Koch 'clusters' satisfy the 
number-radius relation in equation (3.1), in the form N = (R/ Ro)D, with 
the cluster dimension equal to the triadic Koch curve fractal dimension 
D = In 4/ In 3. In general, we call the exponent D in the number-radius 
relation the cluster fractal dimension. 

The cluster fractal dimension is a measure of how the cluster fills 
the space it occupies. Consider the cluster in figure 3.3 obtained by the 
diffusion-limited aggregation process (DLA). In this process monomers 
start from far away and diffuse by a random walk process. The wan­
dering monomers stick to the growing cluster when they reach it. This 
type of aggregation process produces clusters that have a fractal dimen­
sion D(2) = 1.71, for diffusion in a plane, i.e., for the space dimension 
E = 2. Extensive numeric simulations have been performed, l also in 
E = 3-dimensional space, with the result that the clusters are fractal with a 
dimension D = 2.50. For the fractal behavior in 2- to 6-dimensional spaces 
see Meakin (1983). Recent developments in diffusion-limited aggregation 
are discussed in the book by Jullien and Botet (1987), and in the review 
by Meakin (1987b,c). 

Let us emphasize that the fact that a cluster is porous or random does 
not necessarily imply that the cluster is fractal. A fractal cluster has the 
property that the density decreases as the cluster size increases in a way 

ISee Meakin (1983, 1987c), Herrmann (1986), Family and Landau (1984), Stanley 
and Ostrowsky (1985). 
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FIGURE 3.3: Cluster resulting from two-dimensional diffusion-limited ag­
gregation. D = 1.71. The cluster, containing 50,000 particles, was obtained 
in an off-lattice simulation where a random walker starts at a random posi­
tion on a large circle surrounding the cluster. The cluster started at a seed 
in the center. If the walker contacts the cluster, then it is added to the 
cluster and another walker is released at a random position on the circle. 
The cluster was generated using a program developed by Paul Meakin. 

described by the exponent in the number-radius relation. If one insists on 
introducing a particle density, one finds that the density at a radius r for 
clusters similar to the one shown in figure 3.3 is given by 

per) ~ RoDrD-E, 

and this density is constant only if the fractal dimension D equals the 
Euclidean dimension, E, of the space where the cluster is placed. Fractal 
clusters have a density that decreases with distance from the origin. 

The cluster fractal dimension characterizes a feature of the cluster -
how it fills space - in a quantitative way. Note that the shape of the cluster 
is not described by the cluster fractal dimension. There are other features 
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FIGURE 3.4: Metal leaf grown by electrodeposition of zinc at the interface 
between aqueous zinc sulfate and n-butyl acetate. The fractal dimension 
is D ~ 1.63 (Matsushita et al., 1984). 

of a cluster that may be quantified as well. For instance its ramification is a 
measure of the number of bonds to be cut in order to isolate an arbitrarily 
large part of the cluster. 

The striking patterns generated by the DLA process have been ob­
served in many different types of systems where the growth dynamics is 
controlled by the Laplace equation. In the next chapter we discuss in some 
detail the fractal structures generated by the viscous fingering process in 
Hele-Shaw cells and in porous media. Here we discuss a few of the related 
structures that have been observed. For example, Niemeyer et al. (1984) 
observed DLA-like patterns in dielectric breakdown and found a fractal di­
mension of D "'oJ 1.7. They also introduced the dielectric breakdown model 
for simulating the process. This model is useful in many contexts and is 
also related to the DLA model. 

Matsushita et al. (1984) observed the DLA-like structure shown in 
figure 3.4. The zinc metal leaf grows in a two-dimensional manner and 
has a cluster fractal dimension of D ~ 1.63. Brady and Ball (1984) found 
that copper electrodeposits, formed under conditions where the growth is 
diffusion-limited, are three-dimensional fractals with a fractal dimension of 
D = 2.43 ± 0.03, in agreement with the value of 2.5 for three-dimensional 
DLA clusters. 
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FIGURE 3.5: The effective hydrodynamic radius of IgG aggregates as a 
function of the reduced time T = "(t, for various temperatures and concen­
trations. Cluster fractal dimension D = 2.56 ± 0.3 (Feder et al., 1984). 

3.1 Measurements of Cluster 
Fractal Dimensions 

Recently measurements of the cluster fractal dimension as given by equa­
tion (3.1) have been published for various systems and it has been demon­
strated that a description of the experimental results in terms of fractals is 
useful and leads to a rationalization of the results. 

Protein Aggregation 

We have studied the aggregation of immunoglobulin proteins of the IgG 
type using quasielastic light scattering (Feder et al., 1984; J~sang et al., 
1984; Feder and J~sang, 1985). Immunoglobulins in solution tend 
to aggregate when heated. The aggregation kinetics is described by the 
Smoluchowski equation (von Smoluchowski, 1916): 

(3.2) 

Here nk(t) is the concentration of clusters containing k molecules as a 
function of time. The probability that a duster of i molecules combines 
with another cluster containing j molecules to form a new cluster containing 
k = i + j molecules is proportional to Aij. We have shown that it follows 
from equation (3 .2) that the effective hydrodynamic cluster radius {R}, as 
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observed in quasielastic light scattering, grows as a function of time and is 
given by 

(R) = Ro (1 + 1't)l/D , 

when the clusters satisfy the number-radius relation (3.1), in the form 

i = «(R}/Ro)D . (3.3) 

Here Ro is the monomer radius, and l' is a kinetic temperature-dependent 
constant. From the results shown in figure 3.5 we have concluded that the 
cluster fractal dimension for IgG aggregates is D = 2.56 ± 0.3. 

The results obtained at different temperatures and concentrations all 
collapse onto a single curve provided the ansatz (3.3) that the clusters are 
fractal is made. This can be seen in figure 3.5. 

Gold Colloid Clusters 

Weitz and Oliveria (1984), Weitz and Huang (1984) and Weitz et al. (1985) 
have studied aggregates of gold colloids by electron microscopy and by 
light scattering. We have reproduced some of their electron micrographs 
of gold colloid clusters in figure 3.6. They conclude that these clusters are 
fractals with a fractal dimension D '" 1.75. The figure shows clearly that 
the clusters have holes of all sizes that are compatible with the cluster size. 
Also clusters of different size look similar. The fractal dimension obtained 
from an analysis of the electron micrographs is D = 1.7 ± 0.1, as shown in 
figure 3.7. The projections of the clusters seen in the micrographs are not 
compact, which is consistent with the fact that the observed cluster fractal 
dimension is less than 2. 

Weitz et al. (1985) used both light scattering and small-angle neutron 
scattering to study the gold colloid aggregates. In both cases the scattering 
intensity as a function of scattering angle is given by (see also Kjems and 
Freltoft, 1985) 

S() -D . I 411". 0 
q '" q WIt 1 q = T sm 2 ' (3.4) 

where q is the magnitude of the scattering vector, 0 is the scattering angle 
and ,\ is the wavelength of the radiation used. D is again the cluster fractal 
dimension as given in equation (3.1) with the modification that Rand Ro 
are the radii of gyration. From the scattering results they conclude that 
the fractal dimension of the aggregates is D ~ 1.79, consistent with the 
results obtained by analyzing the electron micrographs (figure 3.8). 
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FIGURE 3.6: Transmission electron micrographs of gold clusters of different 
sizes (Weitz and Huang, 1984). 

Silica Colloid Clusters 

Schaefer et a1. (1984) have studied colloidal aggregates of small silica par­
ticles using both X-ray and light scattering. Silica particles with a radius 
Ro f">J 27 A were made to aggregate in solution by changes in pH or salt con­
centration. By the combination of the two different scattering techniques 
they cover an unusually large range of sizes, as seen in figure 3.9. 

Their results cover the range from Ro up to aggregates with R,..., 104 

A and their value for the fractal dimension, D = 2.12±0.05, is an unusually 
precise value. The change in slope of the curve in figure 3.9 is due to the fact 
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FIGURE 3.7: Variation of the mass as a function of size for gold colloid 
aggregates. The mass is in units of a single particle mass and the size is 
scaled by units of the particle diameter. The line corresponds to a fractal 
dimension D = 1.7 ± 0.1 (Weitz and Huang, 1984). 
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FIGURE 3.8: Light scattering and small-angle neutron scattering from gold 
colloid clusters, formed by diffusion-limited aggregation, plotted as a func­
tion of the scattering wave vector k = ~ sin (J (in units of A -1). The 
line represents the theoretical fit corresponding to D ~ 1.79 (Weitz et al., 
1985). 

that the single particles are not fractal dusters, and the intensity crosses 
over to a behavior characteristic of nonfractal particles when the scattering 
vector reaches the inverse particle radius a- 1• 
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FIGURE 3.9: Combined small-angle X-ray scattering and light scattering 
intensity results for silica aggregates. D = 2.12 ± 0.05 (Schaefer et al., 
1984). 

Using small angle-neutron scattering Sinha et al. (1984) have also 
studied powders of fine silica particles compressed to various densities in 
the range 0.009 g/cm3 to 0.45 g/cm3 . For this system they find that the 
neutron scattering intensity is also given by equation (3.4) and they find 
the value D = 2.52 ± 0.05 for the fractal dimension of the powders. 

Kjems and Freltoft (1985) have used small-angle neutron scattering to 
study the fractal structure of colloidal silica both in solution and as dry 
powders. For the solution they find that the colloidal silica is present in 
the form of clusters with a fractal dimension D = 2.4 ± 0.1, whereas the 
dry powders at two densities (obtained by compressing the powders) give 
D = 2.55 ± 0.07. 

Silica aerogels are solids that may be prepared as extremely light and 
tenous materials whose density may be less than 1120 of the density of silica. 
Courtens and Vacher (1987) studied aerogels using elastic coherent small­
angle neutron scattering and concluded that the aerogels are fractal with 
D = 2.40 ± 0.03. They also studied the dynamics of these materials. 



Chapter 4 

Viscous Fingering in Porous Media 

The problem of viscous fingering in porous media is of central importance 
in oil recovery. It is also an interesting problem in hydrodynamics and 
in the physics of porous media. It has recently been shown that viscous 
fingering in porous media is fractal (Ma.l{1jy et aI., 19S5a,b; Chen and 
Wilkinson, 1985). We begin with an introduction to the viscous fingering 
problem in a two-dimensional geometry, the Hele-Shaw cell, and present 
some of the relevant experimental results. We then present experimental 
results on fingering in porous media and discuss in particular the very recent 
evidence that the fingering is fractal. 

The connection between the diffusion-limited aggregation process -
with results similar to figure 3.3 - and the notorious instability of the 
displacement front in porous media where a high-viscosity fluid (oil) is 
displaced by a low-viscosity fluid ( water or gas) is at first surprising. The 
analogy that exists between the two phenomena was recently pointed out by 
Paterson (1984), and rests on the fact that in a continuum approximation 
both problems are described by Laplace's equation. 

4.1 Fluid Flow in the Hele-Shaw Cell 

A Hele-Shaw cell consists of two transparent plates separated a distance b. 
Hele-Shaw (1898) studied the flow of water around various objects placed in 
the cell. He visualized the flow 'streamlines' by injecting a dye to produce 
colored streamlines. These experiments verify directly that the fluid flow 
in a Hele-Shaw cell with a small b is the' potential flow' characteristic for 
low Reynolds numbers. If the plate separation is increased turbulent flow 
with confused streamlines arises at moderate flow velocities. 

41 
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z 

FIGURE 4.1: The geometry of the Hele-Shaw channel. 

The equation for the flow velocity U, derived from the N avier-Stokes 
equations governing flow in the Hele-Shaw cell illustrated in figure 4.1, is 

k 
U = --\7(p+ pgz) = -M\7¢> , 

p. (4.1) 

where p is the pressure, p the density and 9 the component of the accelera­
tion of gravity along the z-coordinate of the cell. The mobility is M = k / p. 
and the flow potential is ¢> = (p + pgz). For a cell placed in the horizontal 
position we therefore have 9 = O. The viscosity of the fluid is p. and the 
permeability of the Hele-Shaw cell is 

( 4.2) 

Note that the velocity in equation (4.1) is the average velocity over the 
thickness of the cell. For incompressible fluids the equation of continuity 
gIves 

k 
\7. U = __ \72(p + pgz) = 0, 

p. 
and \72¢> = 0 . (4.3) 

This is the Laplace equation and it is characteristic of potential problems 
encountered in electrostatics, in diffusion problems and in many other fields; 
consequently we call flows controlled by equation (4.3) potential flows. In 
order to find a solution for the flow velocity we must also specify the bound­
ary conditions - for instance, a given pressure at both ends of the cell, 
and a vanishing fluid velocity where the fluid is in contact with the walls. 
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FIGURE 4.2: Geometry of the fluid-fluid interface. 

We will discuss the situation illustrated in figure 4.1, where a fluid 
(index 1) displaces another fluid (2). The interface between the two fluids 
is controlled by capillary forces when the fluids are at rest and there is a 
pressure difference between the two fluids 

(4.4) 

Here u is the interfacial tension between the two fluids. The two principal 
radii of curvature, Rx and Ry, describe the interface locally as indicated 
in figure 4.2. We define the radii of curvature to be positive if they have 
their center in fluid (1). The radius of curvature Ry is controlled by the 
contact angle, 8, describing how the two-fluid interface contacts the plates 
that define the cell geometry. Typically one finds that Ry ,..., b/2, and we 
will also assume that Rx > Ry. We have that PI > P2 when the fluids are 
at rest and (2) is the wetting fluid. 

Now let us inject the fluid (1) at a constant rate U at z = -00 and 
withdraw fluid (2) at the same rate at z = 00. The interface between 
the two fluids will then move with a velocity U = (0,0, U) along the z­
axis. However, it turns out that the interface is unstable if the viscosity 
of the driving fluid is smaller than the viscosity of the fluid being driven. 
Engelberts and Klinkenberg (1951) coined the term viscous fingering in 
relation to their observation of such instabilities when water drives oil out 
of a porous medium. Flow in porous media also follows equations (4.1) 
and (4.3), and therefore the flow in Hele-Shaw cells is often used to model 
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the flow in porous media. However, as we shall see, there are important 
differences and the validity of using the Hele-Shaw cell as a model of flow 
in porous media is questionable. 

The theory of viscous fingering was developed and compared to ex­
periments independently by Saffman and Taylor (1958) and by Chuoke et 
al. (1959). Recently there has been a growing interest in the field and 
many new theoretical and experimental results have been published, e.g., 
those of Bensimon et al. (1986a), Jensen et al. (1987) and DeGregoria and 
Schwartz (1987). A recent review is given by Homsy (1987). 

The physics of viscous fingering lies in the dynamics of the moving 
boundary. Assume that a pressure difference tlp = PI (Z = 0) - P2(Z = L) 
is maintained over the length L of a finite Hele-Shaw cell where air displaces 
a high-viscosity fluid. The pressure in the air is constant and equal to the 
input pressure PI(Z = 0) since we ignore its viscosity. Assume next that a 
finger gets ahead of the rest of the displacement front; then the pressure 
at the tip of the finger is also PI (z = 0). The largest pressure gradient in 
the high-viscosity fluid is therefore at the tip of the finger and is given by 

Vp = {Pl(Z = 0) - P2(Z = L)}/(L - z) , 

where Z is the position of the tip. This large gradient induces the highest 
flow velocity in the fluid just ahead of the longest finger which grows faster 
than the average front - this is clearly an unstable situation. 

In order to test the stability of the advancing interface we follow the 
standard practice (Chuoke et al., 1959; Saffman and Taylor, 1958) and 
assume that the straight interface is perturbed by a sinusoidal displacement 
so that in the moving frame of reference the position of the interface is given 
by the real part of 

(4.5) 

as illustrated in figure 4.1. The wavelength of the perturbation is A. The 
growth rate of the perturbation is I' 

For a stable interface the perturbation' will decay in time, i.e., 1 < 
O. If the growth rate is positive (I > 0), a perturbation of infinitesimal 
amplitude f will grow exponentially. 

Solving the equations (4.1)-(4.4), including only terms linear in " 
gives the result that the front is unstable with respect to perturbations 
that have a wavelength A that is longer than a critical wavelength Ac given 
by 

(4.6) 
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Perturbations with shorter wavelength are stabilized by interfacial tension. 
Here the critical velocity Uc is given by 

(4.7) 

Note that for P2 > PI we find Ue < 0 for the case Jl2 > Jll so that the 
system is unstable even at U = O. Moreover, in the absence of gravity 
effects (g = 0), the interface is unstable at any velocity since Uc = O. 

All wavelengths A > Ac are unstable; however, perturbations with a 
wavelength Am given by 

have the largest growth rate and will dominate the dynamics of the front. 
We therefore expect that in experiments in a Hele-Shaw channel of width 
W an initially straight interface will develop viscous fingers with a char­
acteristic period Am. Using the expression (4.2) for the permeability and 
assuming that the viscosity of the driving fluid is negligible (JLl < Jl2), as 
is the case when glycerol is displaced by air, we find for a horizontal cell 
that we expect fingers with a period given by 

(4.8) 

Here we have introduced the dimensionless capillary number Ca defined by 

UJL 
Ca=- , 

(1' 

which measures the ratio of viscous to capillary forces. 

4.2 Viscous Fingers in Hele-Shaw Cells 

(4.9) 

Saffman and Taylor (1958) and Chuoke et al. (1959) not only developed the 
theory of viscous fingering in a Rele-Shaw channel, they also studied viscous 
fingering experimentally. We show fingering patterns for air displacing 
glycerol observed by Saffman and Taylor in figure 4.3. The initial air­
glycerol interface had irregularities at the start of the experiments. Note 
that the observed wavelength of approximately 2.2 cm is quite close to the 
wavelength of maximum instability Am = v'3Ac = 2.1 cm. 

Similar fingers were observed by Chuoke et al., as shown in figure 4.4. 
Again the period of the finger structure is quite close to the most unsta­
ble wavelength Am. Recently Maher (1985) observed viscous fingers in a 
situation where the interface tension could be made exceedingly small. 
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FIGURE 4.3: Viscous fingering in a vertical cell where air displaces glycerol 
(dark) from t~e top and downwards. U = 0.1 cm/s and ~c = 1.2 cm. (a) 
Early stage wIth observed average ~ ~ 2.2 cm. (b) Later stage: Fingers 
tend to space themselves. (c) Late stage: Longer fingers inhibit the growth 
of neighbors (Saffman and Taylor, 1958). 
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FIGURE 4.4: Water-glycerol solution (dark), 1'1 = 0.552 poise, 
PI = 1.21 g/cm3 , displacing oil, 1'2 = 1.39 poise, P2 = 0.877g/cm3 . The 
system is tilted an angle of 44°25'. The bulk interfacial tension is u = 33 
dyne/cm, and the oil wets the walls. The critical velocity is Uc = 0.23 cm/s. 
(a) U = 0.41 cm/s, ~m = 3.5 cm, observed ~ = 3.5 cm. (b) U = 0.87 cm/s, 
~m = 2.6 cm, observed ~ = 2.4 cm. (c) U = 1.66 cm/s, ~m = 1.6 cm, 
observed ~ = 1.7 cm (Chuoke et al., 1959). 

If one injects air into the center of a circular Hele-Shaw cell then the 
growing bubble is unstable with respect to perturbations with a wavelength 
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FIGURE 4.5: Radial viscous fingering in a circular Hele-Shaw cell. (a) Air 
displacing glycerol at Ca = 0.1 (M8.l$lSY et al., 1985b). (b) Water displacing 
a non-Newtonian high-viscosity mixture of scleroglutan in water. This 
structure is fractal with D = 1.70 ± 0.05 (Daccord et al., 1986). 

A > Ac given by equation (4.6). This was shown by Paterson (1981). The 
wavelength of the perturbation with the highest growth rate again has 
a wavelength Am = V3Ac. In figure 4.5a we show the fingering pattern 
obtained at a rather high capillary number Ca. It is interesting to note 
that as the fingering structure grows outward the fingers widen. However, 
as soon as they have a width of the order of 2Am, the tips split and therefore 
a branched treelike structure is obtained. 

The most unstable wavelength is Am '" Ca-1/ 2 , so that it decreases 
with increasing capillary number. There is a practical limit to how much 
one may increase the capillary number by increasing the flow velocity U. 
However, since Ca = Up/u, one may increase Ca by using fluids with a 
small interface tension. Nittmann et al. (1985) used a solution of scleroglu­
tan in water as the high-viscosity fluid and displaced it using water. They 
had a very small interface tension and therefore Ca ~ 1. They observed 
the fingering structure shown in figure 4.5b. The fingers are now quite 
narrow and have a width roughly equal to the plate separation. Nittmann 
et al. measured the fractal dimension of the structure in figure 4.5b using 
the box counting method and obtained the result D = 1.7 ± 0.05. 

Ben-Jacob et al. (1985) made an interesting modification of the Hele­
Shaw cell, in which they demonstrated the role of anisotropy. They en­
graved a regular sixfold lattice of grooves with depth b1 = 0.015 in., width 
0.03 in. and edge-to-edge separation 0.03 in. on the bottom plate of a Hele­
Shaw cell 25 cm across. They controlled the effective anisotropy of the cell 
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FIGURE 4.6: The various morphologies observed in the Hele.-Shaw exper­
iment with anisotropy. The cell is 25 cm across. Glycerol (black) is dis­
placed by air (white) injected at the center. The anisotropy of the cell is 
Q' = bdbo = 0.3. The sequence of figures corresponds to increasing driving 
pressure. (a) Faceted growth. (b) Surface tension dendrites (with careful 
inspection it is possible to observe that the dendrite tips are pointed at an 
angle of 30° to the ruling of the groves). (c) Tip splitting growth (in a 
larger and more regular cell they assume that this would correspond to a 
dense-branching growth). (d) Kinetic dendrites (the needle crystals grow 
parallel to the ruled channels). (e) Kinetic dendrites a.t higher pressure 
(Ben-Jacob et al., 1985). 

by varying the plate separation bo, and defined an anisotropy parameter 
by Q' = bl/bo. 

Nittmann and Stanley (1986) have introduced a modification of the di­
electric breakdown model taking into account anisotropy and fluctuations. 
Tip splitting in this model is triggered by fluctuations whereas anisotropy 
favors dendritic growth. In simulations using this model they were able to 
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generate patterns that resemble the observed patterns shown in figure 4.6, 
and in addition they obtained patterns that have a striking resemblance to 
real snowflakes. 

Buka et a1. (1986) used an anisotropic fluid (a nematic liquid crys­
tal) as the fluid being displaced by air in an ordinary Hele-Shaw cell and 
observed patterns similar to those shown in figure 4.6b-d. Horvath et a1. 
(1987) found that viscous fingering in a radial Hele-Shaw cell with parallel 
groves on one of the plates also leads to a rich variety of structures. 

4.3 Viscous Fingers in Two-Dimensional 
Porous Media 

The flow of a fluid in a porous medium is controlled by the same equations 
(4.1) and (4.3) as the flow in a Hele-Shaw cell except that k is now the 
actual permeability of the medium and not the expression (4.2). However, 
experiments show that the fingering dynamics is strikingly different. In fig­
ure 4.7 we show the results obtained for the displacement of a high viscosity 
fluid (epoxy) being displaced by air at a moderately high capillary number 
Ca = 0.04 in a two-dimensional porous medium consisting of a randomly 
packed single layer of glass spheres glued between two glass plates. 

The fingering structures observed were analyzed in the following way. 
The pictures were digitized and each pixel that contained a part of the air 
(black in the figure) was counted as a 'monomer' and the distance ri from 
the center of injection measured. Then in the spirit of the number-radius 
relation (3.1), the number N(r) = N(ri < r) of pixels containing air inside 
radius r from the center of injection was counted. The total number of pixels 
containing air is No, and the radius of gyration for the fingering structure is 
Rg = (Nol Li rl)l/2. In figure 4.8 we have plotted N(r)/No as a function 
of r / Rg , for each of the fingering structures shown in figure 4.7 and for 
similar experiments using glycerol as a high-viscosity fluid. 

It is a remarkable result that the data from all the experiments, i.e., 
for different fluids and for different times for a given fluid, fall on a single 
curve. The straight line in figure 4.8 is clear evidence of a number-radius 
relation of the form 

N(r) = No (;gf f(rjR,) . (4.10) 

This relation is equation (3.1) modified by a crossover function f(x) that 
is constant in the range x < 1 and tends to x-D for x > 1, so that 
N(r) -+ No for r :> Rg • The experimental results in figure 4.7 are best 
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FIGURE 4.7: Fingers of air (black) displacing liquid epoxy in a 
two-dimensional porous medium consisting of 1.6-mm glass spheres in a 
monolayer between two glass plates 40 cm in diameter. The center of in­
jection is near the center of the structure. (a) t = 2 s after the start of 
injection. (b) t = 3.9 s. (c) t = 17.2 s. (d) t = 19.1 s. The capillary 
number is Ca = 0.04 (Ma.I¢y et aI., 1985a,b). 

fitted by choosing D = 1.62 ± 0.04, which is the fractal dimension of the 
viscous fingering in two-dimensional porous media. 

Why are the experimental results in the Rele-Shaw cell at comparable 
capillary numbers shown in figure 4.5a and in figure 4.7 so strikingly dif-
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FIGURE 4.8: The normalized finger structure volume N(r)/No as a function 
of the reduced radius (r/ Rg) for the structures shown in the previous figure. 
(a) Rg = 1.7 cm. (b) Rg = 2.9 cm. (c) Rg = 5.2 cm. (d) Rg = 6.6 cm. (e) 
Another experiment with air displacing glycerol at Ca = 0.15, in a 40-cm 
disk of 1-mm spheres and Rg = 6.7 cm (Mal¢y et al., 1985a,b). 

ferent? In both cases we may neglect the viscosity of the driving fluid, and 
the flow dynamics of the high-viscosity flow is controlled by the Laplace 
equation. The important difference between the Hele-Shaw cell and the 
cell containing a porous medium lies in the boundary conditions. In the 
Dele-Shaw cell the plate separation b is the only length scale in the problem 
apart from the diameter of the circular cell. In a two-dimensional porous 
medium, i.e., a circular cell with a single random layer of glass spheres, 
the typical pore size is also equal to b, and therefore the fluid flow prob­
lem is controlled by the 'microscopic' length scale in all space directions. 
Therefore, although the average fluid flow velocity U is indeed given by 
equation (4.1), which is now called Darcy's equation, and the incompress­
ibility condition (4.3) also applies, so that a Laplace equation results for the 
pressure p( r), the problems are actually quite different since the boundary 
conditions are different. In the Hele-Shaw cell the length scale in the plane 
of the cell is set by capillary forces, in fact by the critical wavelength Ae , 

whereas in the porous medium the length scale is always set by the pore 
size. 

The dynamics of the front is therefore entirely different. For the Hele­
Shaw cell it is only a matter of pressure distribution and of satisfying the 
boundary conditions at the two plates. In the porous medium the pressure 
is also everywhere determined by the Laplace equation (4.3). However, the 
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FIGURE 4.9: Viscous fingering of air displacing glycerol in a 
two-dimensional porous medium consisting of a regular square array of 
cylinders 1 mm in diameter between two plastic plates. The capillary num­
ber is Ca = 0.05 (Feder et aI., 1986). 

decision to displace the fluid from a given pore at the interface is made 
not of the basis on the absolute value of the pressure difference between 
the air and the fluid, but rather on the value of the pressure relative to 
the capillary pressure associated with the pore neck leading to that pore, 
since it is more difficult for the air to enter a narrow pore. This last 
step introduces randomness into the problem since the width of the pore 
necks is random with some size distribution. The dynamics of the viscous 
fingering front in porous media therefore has two main components: the 
global pressure distribution controlled by Darcy's law and therefore the 
Laplace equation, and the local fluctuations in pore geometry. The result 
of these two factors is a growing fractal structure. 

That randomness on the pore level is required in order to obtain fractal 
fingering may be seen in figure 4.9, where the regular fingering structure 
clearly is not fractal . Indeed, Chen and Wilkinson (1985) have shown, by 
experiments and simulations, that randomness in the pore structure is a 
requirement for fractal fingering. 

If instead of displacing the fluid at very high capillary numbers, one 
performs displacements at very low capillary numbers, Ca ,..., 10-4 , then 
one observes fractal structures characteristic of invasion percolation (see 
section 7.8). 
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FIGURE 4.10: Photographs of two-dimensional patterns resulting from 
chemical dissolution of porous plaster by the radial flow of water at dif­
ferent injection rates: (a) 48 cm3 /h; (b) 4 cm3 /h; (c) 2 cm3 /h (Daccord, 
1987). 

Chemical Dissolution of a Porous Medium 

Daccord (1987) has studied the chemical dissolution of a porous medium by 
a reactive fluid that flows through the medium. Daccord cast a I-mm-thick 
plate of pure plaster (caSo4 ·0.5 H20) between two transparent plates. He 
injected distilled water at the center of the disk, thereby creating a flow 
in the porous plaster. Plaster is slightly soluble in distilled water, and the 
flowing water therefore gradually etched a pattern in the plaster. Daccord 
made a cast of the etched pattern using Woods metal, and dissolved away 
the remaining plaster. The resulting patterns for several flow rates are 
shown in figure 4.10. 

The dissolution patterns found at high flow rates are strikingly similar 
to the viscous fingering patterns observed in two-dimensional porous flow 
(figure 4.7) and in DLA simulations (figure 3.3). Daccord has introduced a 
modification of the DLA model that takes into account the transport of dis­
solved material. Simulations with this model reproduce the observed pat­
terns very nicely. The high flow rate patterns are essentially DLA patterns 
and have a fractal dimension of D = 1.6 ± 0.1. Daccord and Lenormand 
(1987) have used this technique to study three-dimensional dissolution by 
flow in porous media. 

4.4 Viscous Fingering and DLA 

The diffusion-limited aggregation process represents a problem in which 
particles are left to wander at random until they reach the 'surface' of the 
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Withdrawal 

FIGURE 4.11: Simulation of the displacement front at breakthrough for one 
quarter of a five-spot well pattern. The driving fluid has infinite mobility 
(Paterson, 1984). 

cluster where they come to rest and thus make the surface grow one step 
at the point of attachment. In the continuum limit random walkers are 
described by the diffusion equation. Let C(r, t) be the concentration of 
walking particles; then the diffusion equation may be written 

aC(r, t) = 1)'v2C(r, t) . at (4.11) 

The diffusion constant is in general given by the Einstein relation, 
V = ! fa2 , for particles that take steps of length a in random directions at 
a rate f. 

With a steady supply of walkers a steady state, ac/at = 0, may 
be obtained and for this case the diffusion equation (4.11) reduces to the 
Laplace equation 

A locally smooth boundary moves with a velocity given by 

Vol = -V n . VC 18 , 

(4.12) 

(4.13) 

in the direction perpendicular to the surface with surface normal n (Witten 
and Sander, 1983). 

The flow of a fluid in a porous medium is described by Darcy's equa· 
tion (4.1). For incompressible flow it is reduced to the Laplace equa­
tion (4.3). This is the same equation as (4.12) above with l/J replacing 
the concentration. 
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However, the problem of two-fluid displacement in porous media is 
more complicated. The standard approach is to take equation (4.1) to be 
valid in each of the fluid components. It has been known for a long time 
that the displacement front is unstable and forms 'fingers' if the viscosity of 
the driving fluid Jl1 is lower than the viscosity Jl2 of the fluid being driven. 
In the limit that the viscosity of the driving fluid can be neglected - for 
instance in a gas drive - the displacement front moves with velocity MV4>, 
analogous to equation (4.13) for DLA. Paterson (1984) first pointed out the 
analogy between DLA and flow in porous media. He has made simulations 
for the standard five-spot well pattern, in which the driving fluid is injected 
in a central well and fluids are produced at four other wells at the corners of 
a square. A quarter of a square is shown in figure 4.11. To the extent that 
the analogy holds, the fractal dimension of the displacement front should be 
1.7, as for DLA in the plane, or 2.5, as for three-dimensional displacement. 
For finite mobility ratios the discussion must be modified, however, since 
in the opposite limit, where the driving fluid is more viscous, the front is 
known to be stable and therefore must have a fractal dimension of 1 in the 
two-dimensional case, and 2 in the three-dimensional displacement. 

We have seen earlier in this chapter that DLA and viscous fingering in 
porous media look very much the same. Also the structures formed have 
roughly the same fractal dimension. We may illustrate the effect of chang­
ing the boundary condition for the flow controlled by the Laplace equation. 
In figure 4.12 we show the result of a DLA simulation in which diffusing 
particles are released from the top line. If a particle contacts the bottom 
line it becomes the root of a new tree. A particle that contacts anyone of 
the existing trees becomes a part of the tree at the point of contact. A new 
particle is started on its random walk trajectory at a random position on 
the top line as soon as the previous one has been adsorbed. The diffusing 
particles are reflected at the vertical walls. The results of the simulations 
and the experiments in figure 4.13 clearly look quite similar. In models 
that are quasi two-dimensional, consisting of many layers of particles but 
otherwise in a Hele-Shaw channel geometry, earlier experiments by Pater­
son et a1. (1982) and by Lenormand and Zarcone (1985b) also show treelike 
viscous fingering structures at high capillary numbers. Matsushita et al. 
(1985) have observed similar fractal tree structures in electrolytically grown 
zinc metal. 

In a recent modification of the DLA model, one may also obtain the 
dynamics of the process. Mal0Y et al. (1987a,b) and Meakin (1987a,c) 
show that the modified dynamical DLA process describes in detail the rate 
at which the fingers grow. We conclude that the DLA simulations de­
scribe quite accurately two-dimensional viscous fingering at high capillary 
numbers. 
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FIGURE 4.12: DLA growth from a line. The particles start on random walk 
trajectories from the top line and they are reflected from the side walls. The 
particles attach on contact to the bottom line and to trees connected to the 
bottom line. The baseline is 801 cells long, and the height of the longest 
finger is 1099. The number of particles is 47,348 (Hinrichsen et al., 1987). 

4.5 Viscous Fingers in Three-Dimensional 
Porous Media 

Several observations of fingering in porous media confirm this picture of 
fingering qualitatively in three dimensions as well. Engelberts and Klinken­
berg (1951) displaced oils with water in packs of sand and sampled various 
cross sections. The water contained fluorescein and when the cross sections 
were photographed in ultraviolet light the water fingers became visible as 
shown in figure 4.14. The rather irregular appearance of the water fingers 
with cross sections of all sizes begs for a fractal description. 

The growth of fingers in porous media in the displacement of oil by 
water with a viscosity ratio of 80 in transparent models made of compacted 
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FIGURE 4.13: Viscous fingering in the displacement of glycerol by air 
(black) in a two-dimensional porous model. The model consists of glass 
beads 1 mm in diameter arranged as a close-packed random single layer 
between transparent plates. The model is placed horizontally. Air is in­
jected along a line shown at the bottom in the figure, and the displaced 
glycerol leaves the model at the . line indicated at the top of the figure 
(Ma.l~y et aI., 1987c). 

Pyrex powder has been observed by van Meurs (1957) and van Meurs and 
van der Poel (1958), as shown in figure 4.15. 

The general fractal-like structure of the fingers is very similar to the 
observed structure in DLA clusters. 

Another observation of fingering in a five-spot pattern is shown in 
figure 4.16. Habermann (1960) made consolidated sand packs by coating 
the grains with a thin layer of epoxy; these were cured between Lucite 
windows to form models of up to 15 x 15 x 1/8 in. in size. The fluids used 
in the various experiments were hydrocarbons, alcohols, glycols and water. 

There is a striking similarity with Paterson's simulation, aggregation 
clusters and the fronts observed at high mobility ratios. We believe that 
Paterson's analogy between aggregation kinetics and displacement fronts 
in porous media is quite accurate and describes the viscous fingering at 
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FIGURE 4.14: Distribution of water in various cross sections after introduc­
tion of 5% of the pore volume. Viscosity ratio pI po = 24 (Engelberts and 
Klinkenberg, 1951). 
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R = Q = 2. 3ClJo R. = 13,,: Q = 23 ClJo 

R = Q = 6.0'10 R. = 20ClJo; Q = 34 ClJo 

R = Q = 9. 5ClJo .R. = 34ClJo; Q = 180CIJo 

R = Q = 12 '0 
FIGURE 4.15: Linear displacement of oil by water at oil-water viscosity 
ratio 80 in a three-dimensional porous medium. Q-total volume injected, 
R-'recovery' volume, expressed as percentages of total pore volume (van 
Meurs, 1957; van Meurs and van der Poel, 1958). 
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FIGURE 4.16: Displacement fronts for different mobility ratios, M, and 
injected pore volumes, P.V., until breakthrough, B.T. (Habermann, 1960). 
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high capillary numbers in two-dimensional media discussed in section 4.3 
very well. However, other factors may enter as well. For example, the 
wetting properties of the fluids and the porous medium also control the 
finger width in realistic systems. For recent discussions see Lenormand 
(1985) and Stokes et al. (1986). Also the situation of miscible displacement 
is different; see, e.g., Chen (1987). 

Experiments on three-dimensional systems are much more difficult to 
analyze quantitatively. We feel, however, that experiments documented in 
the literature support the picture that the displacement fronts are fractals 
for high mobility ratios even for three-dimensional displacement. Clement 
et al. (1985) found evidence of fractal fronts in their three-dimensional 
experiments. How to extend the analogy to model the situation in which 
the mobility ratio is finite and/or the capillary number is not large remains 
an open question. 



Chapter 5 

Cantor Sets 

So far we have introduced several dimensions: the Hausdorff-Besicovitch 
dimension, the topological dimension, the Euclidean dimension, the simi­
larity dimension, the scaling dimension, the cluster dimension and the box 
dimension. The Cantor sets illustrate well many of the important and 
interesting features of fractals. 

5.1 The Triadic Cantor Set 

A very simple construction due to Cantor generates fractal sets with a 
fractal dimension in the range 0 < D < 1. As shown in figure 5.1 the 
initiator is the unit interval [0,1], and the generator divides the interval 
into three equal parts and deletes the open middle part leaving its end­
points. The generator is then applied again to each of the two parts and 
so on. This procedure very quickly produces extremely short segments. 
Because of the finite resolution of our graphics we find that already the 
6-th generation cannot be distinguished from the 5-th generation. After an 
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FIGURE 5.1: Construction of the triadic Cantor set. The initiator is the unit 
interval [0,1]. The generator removes the open middle third. The figure 
shows the construction of the five first generations. D = In 2/ In 3 = 0.6309. 
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infinite number of generations what remains is an infinite number of points 
scattered over the interval. This set is called the Cantor dust (Mandelbrot, 
1977). 

In the following we evaluate the various dimensions introduced in the 
preceding sections for the Cantor set. 

First let us consider the Hausdorff-Besicovitch dimension1 defined in 
equation (2.3). In the n-th generation we have N = 2n segments each 
of length h = (l/s)n for i = 1, ... ,N. If we try to cover the set with 
line segments of length 6 = Ii and place them carefully we may cover all 
segments generated in the n-th generation and therefore all points in the 
Cantor set. The measure defined in equation (2.3) is given by 

)/ 

Md = I: 6d = 2n(1/std = 6d- D . 

i=l 

This measure diverges or tends to zero as 6 is decreased, unless we choose 
d = D = In 2/ In 3 = 0.6309. The topological dimension of the Cantor set 
is DT = O. As DT < D, we conclude that the triadic Cantor set is a fractal 
set with a fractal dimension given by 

D= In2 
In3 ' 

fractal dimension. (5.1) 

The Cantor set as described here is not entirely self-similar. However, 
we may enlarge the set by an extrapolation procedure that covers the region 
[0,3] by two Cantor sets covering the intervals [0,1] and [2,3]. Repeating 
this process ad infinitum, we generate a self-similar set on the half-line 
[0,00). Changing the length scale by the factor r = lis, we need N = 2 
such pieces to cover the original set. From the definition of the similarity 
dimension Ds in equation (2.10), we have 

Ds = InN In2 
In(l/r) = In 3 ' similarity dimension. (5.2) 

The similarity dimension equals the fractal dimension for the triadic Cantor 
set. 

Using the equation (5.2) it is trivial to construct Cantor sets with any 
given dimension in the range 0 < D < 1. As an example we show in 
figure 5.2 two different constructions that both have D = 1/2. The two 
sets 'look' different in spite of the fact that they have the same fractal 
dimension; they have different lacunarity (Mandelbrot, 1982). 

1 As actually finding the Hausdorff-Besicovtch dimension is harder - we only present 
the general idea. 
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FIGURE 5.2: Two constructions of the Cantor set with D = 1/2. Top figure: 
N = 2 and r = 1/4. Bottom figure: N = 3 and r = 1/s. 

The cluster dimension or mass dimension is obtained if we consider 
the extrapolated version of the Cantor set. Start with 'monomers' of length 
flo and generate a 'cluster' of N = 2 monomers of dimension R = 3Ro, and 
so on. A cluster of N = 2n monomers has a diameter R = 3n , and conse­
quently we find that the cluster fractal dimension defined in equation (3.1) 
is given by 

InN In2 
Dc = InR/Ro = In3 ' 

cluster dimension. (5.3) 

The cluster dimension equals the fractal dimension for this Cantor set. 

We conclude that the various dimensions defined so far are all equal 
for the rather simple triadic Cantor set. 

5.2 Scaling with Unequal Ratios 

'\\That happens when the two segments in the triadic Cantor generator are 
no longer identical? In figure 5.3 we have drawn the Cantor bar that results 
when the first section has the length h = 1/4 whereas the second part has 
length 12 = 2/5. Let us evaluate the fractal dimension of this rather simple 
Cantor set S. 

The fractal set S may be covered by some number N of disjoint pieces 
S1, S2, ... , SJI. Let the Euclidean length (diameter) of the i-th set be h so 
that Si fits into a (hyper) cube of side Ii. With a partition for which Ii < 6 
the d-measure used in equation (2.3) to define the Hausdorff-Besicovitch 
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FIGURE 5.3: A two-scale Cantor bar construction with h = 1/4 and 12 = 2/5. 
The fractal dimension of the Cantor set is D = 0.6110. 

dimension is 
At 

Md = ""' It --+ L..J 6-0 
i=1 

{ O, d> D; 
00, d < D. 

(5.4) 

The critical dimension d = D obtained in the limit 6 -+ ° is the fractal 
dimension of the set. We note that this definition coincides with the defini­
tion given by Mandelbrot for Koch curves where different parts scale with 
the ratios ri = Ii. The similarity dimension Ds for such a set is therefore 
the dimension that satisfies 

N 

~rfs = 1, (5.5) 
i=1 

as already discussed in connection with equation (2.11). 

As an example consider the Cantor set constructed as shown in fig­
ure 5.3. In the n-th generation there are N = 2n segments. The short­
est segment has length Ii = (1/4)n and the longest segment has length 
l~ = (2/5)n. There are in general (~) = n!/k!(n - k)! segments with length 
It I2-k , with k = 0,1, ... , n. In the n-th generation the measure Md is 
given by 

At n 

Md = ~ It = ~ (~)/~d l~n-k)d = (It + Ig)n . (5.6) 
i=1 k=O 

Since n increases to infinity as the length scale 6 = '2 tends to zero, we find 
that Md remains finite if and only if d = D, where D satisfies the equation 

(If + If) = 1 . 

A numerical solution of this equation with 11 - 1/4 and '2 
D = 0.6110. 

(5.7) 

2/5 gives 



Chapter 6 

Multifractal Measures 

Consider a 'population' consisting of 'members' distributed over a volume 
of linear size L, that is, over a volume LE. The population could, in fact, 
be the human population distributed over the surface of the earth. The 
population could also be considered to be the meteorological observation 
posts, which are unevenly distributed over the globe. The distribution of 
energy dissipation in space is an example relevant to three-dimensional tur­
bulent flow. The distribution of errors in a transmission line is an example 
of a one-dimensional population. In physics we routinely consider the dis­
tribution of impurities on surfaces and in the bulk. The magnetization of a 
magnet fluctuates in space. We could consider the local magnetic moments 
to be members of a population. Many variables fluctuate wildly in space. 
Gold, for instance, is found in high concentrations at only a few places, 
in lower concentrations at many places, and in very low concentrations al­
most everywhere. The point is that this description holds whatever the 
linear scale is - be it global, on the scale of meters, or on the microscopic 
scale. MultiJractal measures are related to the study of a distribution of 
physical or other quantities on a geometric support. The support may be 
an ordinary plane, the surface of a sphere or a volume, or it could itself be 
a fractal. 

The concepts underlying the recent development of what are now called 
multifractals were originally introduced by Mandelbrot (1972, 1974) in the 
discussion of turbulence and expanded by Mandelbrot (1982, p. 375) to 
many other contexts. The application to turbulence was further developed 
by Frisch and Parisi (1985) and Benzi et al. (1984). Much of the re­
cent interest in multifractals started out with work by Grassberger (1983), 
Hentschel and Procaccia (1983b) and Grassberger and Procaccia (1983). 
A related dimension function was introduced by Badii and Politi (1984, 
1985). 
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The analysis of experimental results and the introduction of the I(a) 
function by Frisch and Parisi (1985) and Jensen et al. (1985) gave a most re­
markable agreement between observations and a simple theoretical model 
(see section 6.10). They demonstrated the usefulness of multifradals in 
describing experimental observations. Related work is described by Ben­
simon et al. (1986b), Halsey et al. (1986b) and Glazier et al. (1986). A 
recent thermodynamic formulation of multifractals, that of Feigenbaum et 
al. (1986), maps the measure onto an Ising model. Nonanalyticities in 
the generalized dimensions of multifractal sets of physical interest may be 
interpreted as phase transitions, according to Katzen and Procaccia (1987). 

The distribution of currents in fractal resistor networks has been dis­
cussed in terms that relate directly to multifractals. See for example de 
Arcangelis et al. (1985), Rammal et al. (1985), Aharony (1986) and Blu­
menfeld et al. (1987). 

Multifractals in the context of diffusion-limited aggregation and re­
lated growth processes have been discussed by Meakin et al. (1985, 1986), 
Meakin (1987b,c) and Halsey et al. (1986a). Nittmann et al. (1987) have 
analyzed viscous fingering in Hele-Shaw cells and found evidence for mul­
tifractal behavior. Mal~y et al. (1987b) analyzed the growth dynamics of 
viscous fingering at high capillary numbers. The observed growth measure 
is described by a multifractal structure. These results are discussed in sec­
tion 6.12. Fractal aggregates and their fractal measures have recently been 
reviewed by Meakin (1987c). 

The idea that a fractal measure may be represented in terms of inter­
twined fractal subsets having different scaling exponents opens a new realm 
for the applications of fractal geometry to physical systems. The study of 
multifractals is a rapidly developing field. In this chapter we first discuss 
a few of the basic ideas, illustrating them with simple examples. Later we 
discuss experimental evidence for multifractal behavior. 

6.1 Curdling and the Devil's Staircase 

Let us modify the meaning of the Cantor set. The initiator is now no longer 
considered to be the unit interval, but rather a bar of some material with a 
density Po = 1. The original bar has a length 10 = 1, and therefore the mass 
Po = 1. The operation of applying the generator now consists of cutting 
the bar into two halves of equal mass J1.1 = J1.2 = 0.5, and then hammering 
them so that the length of each part becomes It = 1/3. By this process 
the density increases to PI = J1.t/lt = 3/2. Repeating this process, we find 
that in the n-th generation we have N = 2n small bars, each with a length 
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FIGURE 6.1: The triadic Cantor bar. A bar of unit length and mass is 
divided into two and hammered to a reduced length so that the density 
increases. The height of the bars in the n-th generation is proportional to 
the density Pi. The Lipschitz-Holder exponent is Q = (In 2)/(ln 3), and the 
fractal dimension of the support of the mass is f = D = (In 2)/(ln 3). 

h = 3-n and a mass Jli = 2-n for i = 1, ... , N. Note that the process 
conserves the mass so that 

(6.1) 

Mandelbrot (1977, 1982) calls this process curdling since an originally uni­
form mass distribution by this process clumps together into many small 
regions with a high density. 

It follows that the mass of a segment of length Ii where Ii < 6 is given 
by 

(6.2) 

Here the scaling exponent Q is given by Q = In 2/ In 3. The density of each 
of the small pieces is 

Jli la-l 
Pi = I; = Po i , (6.3) 

which diverges as Ii -+ O. The scaling exponent Q is a classical notion in 
mathematics - the Lipschitz-Holder exponent, which we discuss further 
in section 6.4. This exponent controls the singularity of the density and 
may also be called the exponent of the singularity. 
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FIGURE 6.2: The mass of the triadic Cantor bar as a function of position 
along the bar. The curve is called a Devil's staircase. 

In figure 6.1 we have drawn a version of the triadic Cantor set in 
which the height of each segment is given by the density Pi. We see that 
this modification of the Cantor construction needs the scaling exponent Q 

to describe how the height of the bars increases as the width decreases. We 
may say that the singularities with exponent Q have a support of fractal 
dL.-nension f = D. 

In the discussion above we considered Pi to be the contribution from 
a segment to the mass in the Cantor bar. The results obtained would be 
the same if instead of using the mass we consider P to be electric charge, 
magnetic moment, hydrodynamic vorticity or a probability for some phe­
nomenon. In general P can measure any quantity that is supported by a 
geometric set. 

An interesting construct - the Devil's staircase - may be obtained 
from a Cantor bar. Start at the left of the bar shown in figure 6.1, at the 
position x = 0, and find the mass contained in the segment [0, xl, which 
formally may be written 

M(x) = 1.:1: p(t) dt = 1.:1: dp(t) . 
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Here the 'density' p(x) is zero in the gaps and infinite on all of the infinite 
number of points that constitute the Cantor set. The mass M(x) remains 
constant on the intervals that correspond to the gaps. The lengths of the 
gaps add up to 1, i.e., the length of the whole interval. Therefore over a 
length equal to the length of the interval one finds that M (x) does not 
change. One might then jump to the conclusion that M(x) = 0, which 
would be a correct conclusion for a sensible curve. However, the mass 
increases, by infinitesimal jumps, at the points of the Cantor set and all 
these contributions add up to M(l) = 1. The mass as a function of x, 
shown in figure 6.2, resembles a staircase - called the Devil's staircase -
that is (almost) everywhere horizontal. The self-affine nature of this curve 
is apparent in figure 6.2. For a discussion of the origin of Devil's staircases 
in many physical systems see Bak (1986). 

6.2 The Binomial Multiplicative Process 

Populations or distributions generated by a multiplicative process have 
many applications and have the advantage that many properties of these 
distributions may be easily analyzed. We start with a one-dimensional 
example. Let a population consisting of }/ members be distributed over 
the line segment S = [0,1]. We will consider the limit N --+ 00. We 
consider N to be a sample of an underlying distribution when N is finite. 
In order to characterize this distribution we divide the line segment into 
pieces (cells) of length {) = 2-n , so that N = 2" cells are needed to cover 
S. Here n is the number of generations in the binary subdivision of the 
line segment. We label the cells by the index i = 0,1,2, ... , N - 1. The 
distribution of the population over the line is specified at the resolution 6, 
by the numbers, ,M, of members of the population in the i-th cell. The 
fraction of the total population I-'i = Nil N is a convenient measure for the 
content in cell i. The set M, given by 

{ } N-l 
M = 1-', ;'=0 , (6.4) 

gives a complete description of the distribution of the population at the 
resolution 6. The measure M(l) of a part, or subregion l, of the line 
segment S is 

(6.5) 

In general this is the end of the story; the only way one can describe 
the distribution of members over the line is by giving M, with a suffi­
cient resolution, that is, sufficiently small 6, to suit one's needs. However, 
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FIGURE 6.3: The measure M(z) for the binominal multiplicative process 
after n = 11 generations with 1-'0 = P = 0.25 and 1-'1 = 1 - p = 0.75. (a) 
The measure or content I-' of a cell as a function of the segment number 
(posi tion) z = i . 2-11 . (b) The measure M (z) for the interval [0, z] as a 
function of z. 

when M has a scaling property, then much more can be said about the 
distribution, as we shall demonstrate using a simple example. 

Consider the following multiplicative process, 1 which generates a mea­
sure on the unit interval S = [0,1]. First divide S into two parts of equal 
length 6 = 2-1 . The left half is given a fraction p of the population and 

lThis is the Besicovitch process discussed by Mandelbrot (1982, p. 377). 
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therefore the left segment has measure flo = p. The right-hand segment is 
given the remaining fraction and has the measure 1-'1 = 1 - p. Increase the 
resolution to 0 = 2-2 • The multiplicative process divides the population 
in each part in the same way. We find four pieces with the fractions of the 
population in the cells given by 

The next generation, n = 3, is obtained by dividing each cell into two new 
cells. A cell with the content 1'. is separated into a left-hand cell with 
measure J.lj = PiPO and a right-hand cell with measure Pi+1 = J.liJ.l1' The 
whole line segment [0, 1] is now divided into cells of length 0 = 2-3 , and 
the set M in the third generation is therefore given by the list of measures 

poPoPo , J.lofloJ.l1 , J.lOP1J.lo , POP1J.l1 , 
P1POPO , P1POP1 , J.l1J.l1J.lo , fl1J.l1J.l1 . 

As this process is iterated, it produces shorter and shorter segments that 
contain less and less of the total measure. Figure 6.3 shows both the 
measure p( x) of the cell located at x and the measure 

%·2" 

M(x) = I: fli , (6.6) 
i=O 

for the region [0, z], after 11 generations of the multiplicative process. Here 
x specifies the cell index i = x . 2n. The measure M (x) is scaling in the 
sense that the left half of figure 6.3 is obtained from the whole, and the 
right half from whole, by the relations (see also equation (10.10) 

M(x) = pM(2x) , for 0 < x < ~ , 
M(x) = p + (1 - p)M(2x - 1), for ~ < x < 1 . 

(6.7) 

The relations (6.7) describe an affine transformation of the function M(x), 
a notion which we discuss in some detail in chapter 10. 

After n generations there are N = 2n cells labeled sequentially by the 
index i = 0, ... , N - 1. The length of the i-th cell is On = 2-n , and the 

. f hI' . h II . 1: (n-I:) h measure, or fractIOn 0 t e popu atIOn, In t e ce 18 fli = flofl1 , were 
k is the number of O's in the binary fraction representation of the number 
x = i/2n. This can be seen if we represent the cell index i by a binary 
fraction: 

n 

X = i/2n = l:2-vcv . 
v=l 

(6.8) 
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The 'digits,' fill have only two possible values: 0 and 1. For example, in 
the third generation, the first cell, i = 0, is represented by 0.000, the i = 1 
cell by 0.001, the next cell by 0.010, etc., until finally the last cell, i = 7, is 
represented by 0.111. We need binary fractions having n digits in order to 
represent all the cells in the n-th generation. 

Figure 6.3a shows the measure of the cells generated in the ll-th gen­
eration of the multiplicative process with p = 0.25. As shown in figure 6.3a 
there is one cell with the highest measure (1 - p)n. There are 11 cells 
with measure (1 - p)n-lpl, etc. In general we have, with e = kIn and 
k = 0,1, ... n, 

NnW = (e:) = (en)! «7!- e)n)! (6.9) 

intervals with measure 

(6.10) 

The total measure of the segments representing the population is 

2"-1 1 

M(x = 1) = 2: Pi = 2:Nn(e)~n(e) = (1'0 + PIt = 1 . (6.11) 
i=O c=O 

The cells, describing the distribution of the population, cover the line com­
pletely, and contain all of the measure, that is, every member in the pop­
ulation. 

6.3 Fractal Subsets 

In the n-th generation Nn(e) line segments have the length On = 2-n and 
the same measure Pc. These segments form a subset, Sn(e), of the unit 
interval S = [0,1]. The points in the set Sn(e) have the same number, 
k = en, of O's among the n first decimal places in the binary expansion of 
the x-coordinate of the points. Of course, different points are represented 
by different sequences of zeros and ones. One finds, in the limit n -+ 00, 

that e is the fraction of zeros in the infinite binary fraction representation 
of the points in the set Sf.. This set is a fractal set of points. To see this we 
cover the set with intervals of length 0 and form the d-measure Md(Sc), as 
in equation (2.3), and determine the fractal dimension D(e) of this set by 
studying how the Md behaves as 0 -+ 0, and n -+ 00: 

(6.12) 
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FIGURE 6.4: Fractal subsets of the measure generated by a binomial multi­
plicative process with p = 0.25. (a) The fractal dimension of subsets Sf. of 
the interval that contain points x having a fraction e of zeros in the binary 
expansion of x, as a function of e. (b) The fractal dimension of subsets SOl 
having a Lipschitz-Holder exponent a, as a function of a. 

We use Stirling's formula for n!: 

n! = v'21rnn+! e-n , 

in equation (6.9) to find an approximate expression for Nn(e): 

1 
Nn(e) ~ v211'ne(1- e) exp{-n(elne + (1- e) In(l- e))} . 

(6.13) 

(6.14) 

Noting that n = -In 6/ In 2, we find that the measure Md in equation (6.12) 
may be written (neglecting the term n-!, which gives only a logarithmic 
correction) as 

(6.15) 
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with the exponent fee) defined by 

e In e + (1 - e) In( 1 - e) 
In2 

(6.16) 

It follows that the d-measure Md for the set SF. remains finite as 6 --+ 0 
only for d = fee), and therefore the fractal dimension, D(e), of the set SF. 
is fee). 

The population generated by the multiplicative process is spread over 
the set of points in the unit interval S = [0, 1]. This set is a union of subsets 

SF.: 
S = USF.. (6.17) 

F. 
The points in a subset SF. have, loosely speaking, the same population 
'density.' The sets SF. are fractal with fractal dimensions I(e) given by 
equation (6.16). The fractal dimension depends on the parameter e. We 
have plotted fee) as a function of e in figure 6.4a. 

The measure M(x) of the population distributed over the unit interval 
is completely characterized by the union of fractal sets. Each set in the 
union is fractal with its own fractal dimension. This is one reason for the 
term multifractal. 

6.4 The Lipschitz-Holder Exponent a 

The parameter e is not very useful and in practice one uses the Lipschitz­
Holder exponent 0' instead (e.g., Mandelbrot, 1982, p. 373). The singular­
ities of the measure M (x) are characterized by 0'. Consider the measure 
generated by the multiplicative process at the n-th generation. This mea­
sure is a non decreasing function of x, with increments PF. = An(e), at all 
x that have e . n zeros among the n first 'digits' when written as a binary 
fraction, that is, as x = L:~=l 2- 11 (II. Choose a x(e) that corresponds to a 
given value of e; this point is a member of the set SF.. The measure M (x) 
is also given at a point x( e) + 6, with 6 = 2-n . The increment in M (x) 
between these two points is PF. and we have 

PF. = M(x(e) + 6) - M(x(e)) = 60t , (6.18) 

where we have defined 0' by the equation 

(6.19) 

In the subsequent generations more and more points in the set SF. are 
obtained and equation (6.18) remains correct even in the limit n --+ 00. 



76 CHAP. 6 • MULTIFRACTAL MEASURES 

A function M(x) which satisfies equation (6.18) for all values of x has a 
derivative if a = 1, is constant for a> 1, and is singular if 0 < a < 1. 

It follows from equations (6.10) and (6.19), and fJ = 2-n , that the 
measure for a multiplicative population has a Lipschitz-Holder exponent 
given by 

(~) = lnpe = _ elnp+ (1-e)ln(1- p) 
a, InfJ In2 . (6.20) 

This a holds for the points in the set Se, and is a linear function of e. a 
is a function also of the weight p, defining the subdivision of the interval. 
We find for the multiplicative measure with p < ~ that am in < a < a max 

with 
amin = -In(l- p)/ln2, for e = 0, 

a max = -lnp/ln 2 , for e = 1 . 
(6.21) 

There is a one-to-one correspondence between the parameters e and 
a, and therefore the subsets Se may also be written as SOt. The measure 
M(x) is characterized by the sets SOt, which as a union make up the unit 
interval S = [0,1]: 

(6.22) 

The measure has 'singularities' with Lipschitz-Holder exponent a on fractal 
sets SOt, which have the fractal dimension f(a) = f(e(a)). The f(a) curve 
for the measure of the population generated by the multiplicative process 
with p = 0.25, is shown in figure 6.4b. 

In a recent paper Meneveau and Sreenivasan (1987) show that obser­
vations of fully developed turbulence are very well described by the process 
just discussed. The binomial multiplicative process, with p = 0.7, leads to 
an f(a) curve that describes accurately the observed multifractal spectrum 
of the dissipation field (see figure 6.5). 

6.5 The f(o:) Curve 

The f(a) curve in figure 6.4b has a few quite general features which will 
be discussed further in section 6.8. The derivative of f(a) is 

df(a) lne -In(1- e) 
~ = Inp-ln(1-p)' 

(6.23) 
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FIGURE 6.5: The multifractal spectrum for one-dimensional sections 
through the dissipation field in several fully developed turbulent flows (grid 
turbulence, wake of a circular cylinder, boundary layer, atmospheric tur­
bulence). The symbols correspond to the experimental mean and the con­
tinuous curve is the /(0:) curve for the binomial multiplicative process with 
p = 0.7 (Meneveau and Sreenivasan, 1987). 

The maximum is /(0:0) = 1, with 

c _ 1 
,- '2' 

/max = /(0:0) = 1 , 

_ lnp+ln(l-p) 
0:0 - - 2In2 . 

(6.24) 

It is a general result that the maximum value of the fractal dimension of 
the subsets Sa equals the fractal dimension of the 'support' of the measure, 
which is 1 here since the measure is defined over the whole unit interval. For 
measures defined on fractals with a fractal dimension D one finds /max(O:) = 
D. Here the set Sao has a fractal dimension of 1. This does not imply that 
this set covers the interval, but rather that Sao contains a fraction of the 
points in the interval. 

The maximum is at 0:0 = 1.207 ... , for p = 0.25. The function M(x) 
has zero derivative in the points where 0: > 1. But M(x) is a singular 
function because points where o:(e) < 1 are everywhere dense. 

The discussion of the properties of the function M(x) is somewhat 
delicate and involves questions such as whether or not the limit points of 
the sequence of points generated by the multiplicative process are included; 
see Mandelbrot (1982, p. 377), and Billingsley (1965). For a popular 
account of the properties of this function see Billingsley (1983). We discuss 
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the function again in chapter 10. We comment here that the curve M(x) 
has zero derivative 'almost everywhere.' Nevertheless it increases from 0 
to 1, as x increases from 0 to 1. It is a Devil's staircase. The length 
of the curve from the origin to the end at (1,1) is equal to 2. The term 
'almost everywhere' means here at all points except on a set of points with 
Lebesgue measure zero. These exceptional points can be covered by line 
segments of arbitrarily small total length. It is easy to see that the binary 
fractions have zero (linear) measure: Write the fractions in a systematic 
fashion ~, ~, ~, i, i, .... Cover the first point with a line segment of length 
62 , the next with a segment of length 63 , the next with 64 , and so on. The 
infinite sequence of these segments will cover all the binary fractions, and 
they have a length f = 62 + 63 + ... = 62/(1- 6), which vanishes as 6 -+ o. 

Another special point on the 1(0:) curve occurs at 

d~C:) = 1 , 

e =p, 
I(o:s) = O:s = S , 

(6.25) 

S = - {plnp+ (1- p)ln(l- p)}/ln2. 

w here a line through the origin is tangent to I ( O:s ). The fractal dimension 
of the set SOts is S, which is recognized as the (information) entropy (e.g., 
Mandelbrot, 1982, p. 378) of the binomial multiplicative process. In the 
general multiplicative process, where the interval is subdivided into b cells 
with weights PO,PI, ... ,Ph-I, one finds that the I(Ots) is given by 

h-1 

S = -2: pploghPP , 
p=o 

(6.26) 

where 10gb is the base b logarithm. In the next section we show that almost 
all of the measure concentrates on the set SOts· 

6.6 The Measure's Concentrate 

The multiplicative process generates a population that has the overwhelm­
ing bulk of the initially uniform population concentrated into 'the set of 
concentration.' In the n-th generation the measure in the set Sn(e) is given 

by 

M(Sn(~» = Nn(~)/J{:::: "j2,rn \1- p) exp {-2p(t- p) (~- p)2} . 
P (6.27) 



SEC. 6.6 • THE MEASURE'S CONCENTRATE 79 

The approximate expression on the right-hand side was obtained using 
equations (6.10) and (6.14) and expanding the exponent around the max­
imum value at e = p. The measure of the set Sn(e) as a function of e is 
very sharply peaked around e = p, and decreases as n - ~, with increasing 
n. However, a finite part, ¢, of the total measure M (x = 1) is contained 
in a union of sets 

S¢ = U Sn(e) , (6.28) 
(p-O' ):::;; {:::;; (p+0') 

with (j -+ 0 as n -+ 00. To see this, note that the measure of the set S¢ is 
given by (remember that e = kIn so that L1: ... -+ n J de .. ·) 

M(S.) = ,j2m,;(1- p) 2 t+ q
) de ex:p {- ;~~l 1)} 

(6.29) 

= }; loT dt exp{ _t2 } , 

with the upper limit of integration, T, given by 

(6.30) 

This upper limit is determined by the condition M(S¢) = ¢, i.e., that the 
measure of S¢ is a finite fraction, 0 < ¢ < 1, of the total population. This 
gives T = T( ¢), and we find 

-- o. n-oo 
(6.31) 

This demonstrates that the measure concentrates on a set S¢. In the limit 
n -+ 00 one finds that S¢ is essentially S(e = p), with a fractal dimension 
given by the the entropy dimension S (Mandelbrot, 1982). This effect of 
concentration of the measure is called curdling. 

Let us summarize. We find that a fraction of the measure arbitrarily 
close to 100% is contained in sets that have e :::: p for which N(e)J1.e is near 
its maximum. These sets have fractal dimensions given by the entropy 
of the multiplicative process. Of course, similar arguments lead to the 
conclusion that a finite fraction of the points in the interval is contained in 
sets with e :::: 1/2 for which N(e) is near its maximal value. These sets have 
fractal dimensions given by the fractal dimension of the support, which is 
1 in this case. 
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6.7 The Sequence of Mass Exponents T(q) 

Fractal structures observed experimentally, for example coastlines, or the 
viscous fingering pattern in figure 4.7, can also be modeled by numeric 
simulations as shown in figure 3.3. Both experimental observations and 
the results of simulations give sets of points S, which then are presented in 
the form of curves or figures. Perhaps the most widely used method in the 
analysis of the structure of such sets is the box~counting method illustrated 
in figure 2.1. In this method the E-dimensional space of the observations 
is partitioned into (hyper-)cubes with side 6, and one counts the number 
N(6) of cubes that contain at least one point of the set S. Clearly, this is 
the crudest form of measure of the set, and it gives no information as to 
the structure of the set. For instance if the coastline folds back and forth so 
that it crosses a given 'box' a number of times ni, that box still contributes 
only 1 to the number of boxes needed to cover the set - this somehow 
does not seem quite fair. Is there a way to give a higher weight to boxes 
with high ni and lower weight to boxes with ni = 1 ? 

The answer has two main components: the curdling of the measure 
M(x) on the set discussed in section 6.2 (Mandelbrot, 1974), and the un­
equal scaling ratios discussed in section 5.2. Grassberger (1983), Hentschel 
and Pro caccia (1983b) and Grassberger and Procaccia (1983) used a mea­
sure that addresses the curdling problem. A related measure that also deals 
with the unequal scaling ratios has recently been introduced by Halsey et 
al. (1986b). These measures are identical, except for notation, to other 
probability measures discussed by Mandelbrot (1972, 1974, 1982) and by 
Voss (1985a). Meakin (1987b,c) has also discussed a related set of surface 
mass exponents. 

A set S consisting of N points will have .M points in the i-th cell. 
These points are sample points of an underlying measure. Let us use the 
'mass' or probability J,li = .MIN in the i-th cell to construct the measure 
which may be written 

N { q d d 0, d> T(q) , 
Md(q, 6) = ~J,li6 = N(q,6)6 ~ 00, d < T(q) . 

,=1 
(6.32) 

This measure has a mass exponent d = T(q) for which the measure nei­
ther vanishes nor diverges as 6 -+ O. The mass exponent T(q) for the set 
depends on the moment order q chosen. The measure is characterized by 
a whole sequence of exponents T( q) that controls how the moments of the 
probabilities {J,li} scale with 6. It follows from equation (6.32) that the 
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FIGURE 6.6: The sequence of mass exponents T(q) as a function of moment 
order q, for the measure Md(q,6) for the binomial multiplicative process 
with p = 0.25. 

weighted number of boxes N (q, 6) has the form 

N(q,6) = L 14 .... 6-T (q) , 

i 

and the mass exponent is given by 

( ) 1. In N (q , 6) 
Tq=-un l~ . 

6-0 nu 

(6.33) 

(6.34) 

We first note that if we choose q = 0 for the moment order q, then we 
have 1'1=0 = 1. Therefore we find that N (q = 0, 6) = N (6) is simply the 
number of boxes needed to cover the set, and reO) = D equals the fractal 
dimension of the set. The probabilities are normalized: Ei /-Li = 1, and it 
follows from equation (6.34) that T(l) = O. 

Choosing large values of q, say 10 or 100, in equation (6.33) favors 
contributions from cells with relatively high values of /-Li since 1'1 ::::> pJ, 
with J.ti > Pj if q ::::> 1. Conversely, q ~ -1 favors the cells with relatively 
low values of the measure J.ti on the cell. These limits are best discussed 
by considering the derivative dT( q) / dq given by 

dT(q) = _ lim Li 1'1ln Pi 
dq 6-0 (2: I'D In 6 . 

Let 1'- be the minimum value of Pi in the sum. Then we find 

dT(q) 
dq q--oo 

(6.35) 
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where the prime on the sum indicates that only cells with J.li = J.l- con­
tribute. This expression may be rewritten as 

dT(q) 
dq q--oo 

I. In 1-'-
= - 1m -1 ~ = -O:'max . 

6-0 nu 
(6.36) 

Here we have used the definition (6.19) of the Lipschitz-Holder exponent 
0:'. A similar argument in the limit q ...... 00 leads to the conclusion that the 
minimum value of 0:' is given by 

dT(q) 
dq 

. In 1-'+ = - 11m -1 ~ = -O:'min , 
q-+oo 6-0 nu 

(6.37) 

where J.l+ is the largest value of J.li, which leads to the smallest value of 0:'. 

In the next section we show that 0:' = -dT / dq in general. 

For q = 1 we find that dT / dq has an interesting value: 

dT(q) = -lim Ei I-'i Inl-'i = lim 8(0) , (6.38) 
dq q=1 6-0 In 0 6-0 In 0 

where 8(01 is the (information) entropy of the partition of the measure 
M = {l-'ih=01 over boxes of size 0, which may be written as 

8(0) = - LJ.li Inl-'i - -0:'1 ·lno . 
i 

(6.39) 

The exponent 0:'1 = -(dT/dq)lq=1 = Is is also the fractal dimension 01 the 
set onto which the measures concentrates and describes the scaling with 
the box size 0 of the (partition) entropy of the measure. Note that the 
partition entropy 8(0) at resolution 0 is given in terms of the entropy 8 of 
the measure by 8(0) = -SIno (see also equation (6.26». 

The general behavior of the sequence of mass exponents T(q) is il­
lustrated by the measure on the interval generated by the multiplicative 
binomial process. For this process we find that 

N(q,o) = t (n)pqk (1 - p)q(n-k) = (pq + (1- p)q)n . 
k=O k 

(6.40) 

With the generation number given by n = -In 0/ In 2, as before, we find 
using equation (6.34) that 

() In(pq + (1- p)q) (6.41) 
T q = ln2 

The resulting sequence of mass exponents is shown in figure 6.6. For q = 0, 
we find T(O) = 1, which is the dimension of the support, i.e., the "unit 
interval. 
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6.8 The Relation between r(q) and f(a) 

The sequence of mass exponents is related to the f ( 0:) curve in a general 
way that is useful in applications. A multifractal measure is supported 
by a set S, which is the union of fractal subsets SOl with a chosen in the 
continuum of allowed values 

(6.42) 
01 

What are the fractal dimensions describing the measure? Since the com­
plete set S is fractal, with a fractal dimension D, the subsets have fractal 
dimensions f(o:) < D. For fractal subsets, with a fractal dimension f(cx), 
the number N ( a, 6) of segments of length 6 needed to cover the sets SOl 
with 0: in the range 0: to 0: + dcx is 

N(a,6) = p(a)d0:6-J(0I) • (6.43) 

Here p(o:)do: is the number of sets from SOt to SOI+dOl' For these sets the 
measure J.l.0I in a cell of size 6 has the power-law dependence (6.2) on the 
length scale 6 so that we may write POI = 601 , and therefore the measure M 
for the set S given in equation (6.32) may be written 

(6.44) 

The integral in equation (6.44) is dominated by the terms where the inte­
grand has its maximum value, in other words for 

~ {qo: - f(o:nl = O. 
dcx Ot=Ot(q) 

(6.45) 

The integral in equation (6.44) is therefore asymptotically given by 

(6.46) 

Here Md remains finite in the limit 6 -+ 0 if d equals the mass exponent 
r(q) given by 

r(q) = f(a(q» - qa(q) , (6.47) 

where o:(q) is the solution of equation (6.45). Thus the mass exponent is 
given in terms of the Lipschitz-Holder exponent a(q) for the mass, and the 
fractal dimension f(cx(q» of the set that supports this exponent. 

We may, on the other hand, if we know the mass exponents r(q), 
determine the Lipschitz-Holder exponent and f using equations (6.45) and 
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q T(q) a = -dT(q)/dq l=qa+T(q) 
q -+-00 I"oJ -qamax -+ a max = -lnl'_/ln 6 -+0 

q=O D ao Imax = D 
q=1 0 al = -8(6)/ln6 Is = al = S 

q -+ +00 I"oJ -qamin -+ amin = -In 1'+ / In 6 -+0 

TABLE 6.1: Special values and limits of the sequence of mass exponents T(q) 
and of the I(a) curve for a multifractal measure, M = {I'i}, supported 
by a set with fractal dimension D. Here q is the moment order of M 
(see equation (6.32». The largest and smallest probabilities in boxes of 
size 6 are 1'- and 1'+, respectively. 8(6) is the entropy of the partition 
of the measure M over boxes of size 6. The measure has the entropy 
8 = -limeS_o 8(6)/ In 6 = Is, which is the fractal dimension of the set of 
concentration for the measure. 

(6.47). This gives 

a(q) = --1qT(q) , 
(6.48) 

I( a(q» = qa(q) + T(q) . 

These two equations give a parametric representation of the I(a) curve, 
i.e., the fractal dimension, I(a), of the support of 'singularities' in the 
measure with Lipschitz-Holder exponent a. The I(a) curve characterizes 
the measure and is equivalent to the sequence of mass exponents T(q). The 
pair of equations (6.48) in effect constitute a Legendre transformation from 
the independent variables T and q to the independent variables I and a. 
U sing the pair of equations 6.48 for the simple example of the binomial 
multiplicative process with T(q) given by equation (6.41) (see figure 6.6), 
we recover the I(a) curve shown in figure 6.4b. 

The maximum of the I(a) curve occurs for dl(a)/da = O. From 
equation (6.45) it follows that we then have q = 0, and we conclude from 
equation (6.48) that Imax = D, since we have shown that T(O) = D, where 
D is the fractal dimension of the support of the measure. We have sum­
marized the various relations between the I(a) curve and the sequence of 
mass exponents in the table above. 
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6.9 Curdling with Several Length Scales 

Consider the generalization of the binomial multiplicative measure to a 
Cantor set support as illustrated in figure 6.7. In each generation each 
surviving piece is divided into two intervals, a small piece of relative length 
10 = 0.25 and a large piece of relative length It = 004, whereas the middle 
piece is cut out. The small piece is given a fraction Po = 0.6 and the large 
piece is given only a fraction PI = 004 of the me~ure contained in the 
parent interval. 

If we try to apply the definition equation (6.32) to the Cantor bar 
shown in figure 6.7, we immediately see that the definition is inadequate 
since it uses the same box size 6 on all cells used to cover the set. The 
measure recently used by Halsey et al. (1986b) is a combination of the two 
generalizations (504) and (6.32). Consider, as in the definition (504), that 
the fractal set S may be partitioned into some number N of disjoint pieces 
So, SI, ... , S N -1, covering the set. Let the Euclidean length of the i-th set 
be Ii so that S, fits into a (hyper-)cube of side Ii such that Ii < 6, for all i. 
The measure is then defined by 

N-l { Ma( 6) =" ?/~ --I- 0, d> r(q) , 
q, ~ 1', I 6-0 00, d < r(q) . ,=0 

(6049) 

This measure again has a mass exponent d = r(q) for which the measure 
neither vanishes nor diverges as 6 -+ O. 

We illustrate the use of this measure by a discussion of the two-scale 
(/0 = 0.25, 11 = 004) Cantor set, with a measure generated by a multiplica­
tive process (Po = 0.6, PI = 004) (see figure 6.7, and Halsey et 31., 1986b). 
Since we have (~) segments oflength 181?-k and weight J.li = p~p'i-k in the 
n-th generation of the Cantor bar in figure 6.7, we find that the measure 
is easily evaluated and given by 

}'la(q,6) = t (;) (p~/g)k(p~lt)n-k = (p~lg + piltt . 
k=O 

(6.50) 

This measure remains finite with 6 = l'i asn -+ 00 if, and only if, one 
chooses d = r(q), where r(q) is the solution of the equation 

p~/~(q) + p~ I~(q) = 1 . (6.51) 

We have solved the equation (6.51) for r(q) numerically. Once T(q) 
is available the /(0:) curve shown in figure 6.8 is obtained as before (see 
equation (6048)). 
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• -

FIGURE 6.7: A two-scale fractal measure on a Cantor bar with 10 = 0.25 
and weight Po = 0.6, and h = 0.4 with PI = 0.4. The height of the bars in 
the n-th generation is proportional to the density Pi = Pi/Ii. The fractal 
dimension of the Cantor dust supporting the measure is D = 0.6110. 
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FIGURE 6.8: The J(o:) curve for the two-scale fractal measure on a Cantor 
bar S, with 10 = 1/4, 11 = 2/5 and weights Po = 3/5 and PI = 2/5. This 
represents the fractal dimension, J, of the subsets Sa with Lipschitz-Holder 
exponent 0: as function of 0:. 

For q = 0 the mass exponent T(O) equals D = 0.6110 - the same value 
we determined for the fractal dimension of the set using the definition (5.4) 
for the measure of the set. In the limit q -+ 00, we have that pg ~ pr. 
Therefore the first term dominates the left-hand side in equation (6.51) and 
T(q) is simply given by the equation 

PQl1'(q) - 1 
00 - • 

This leads to the result 

In Po 
with O:min = In 10 = 0.3685 . (6.52) 

Similarly, as q -+ -00, the PI term dominates and we find that 

with (6.53) 

Halsey et al. (1986b) discussed the measure given in equation (6.49) 
in terms of the dimension function Dq introduced by Grassberger (1983), 
Hentschel and Procaccia (1983b) and Grassberger and Procaccia (1983), 
which is given by 

Dq = T(q)/(1- q) , (6.54) 

where the numeric factor (1 - q) modifies the mass exponent T(q) to give 
the result that Dq = E for sets of constant density in E-dimensional space. 
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FIGURE 6.9: The spectrum of fractal dimensions Dq as a function of 
the moment order q for the triadic Cantor dust with 10 = 1/4, 11 = 2/5 
and weights Po = 3/5 and PI = 2/5. Doo = In Po/ In 10 = 0.3685 and 
D-oo = lnpl/lnh = 1. 

The spectrum of fractal dimensions Dq i then given by 

D __ I_Ii InN(q,6) 
q - q - 1 6~ In 6 . (6.55) 

The moment order q is any number in the range -00 to 00, and the function 
Dq is the spectrum of fractal dimensions for a fractal measure on the set 
S. If we choose q = 0 for the moment order q, then we have J-ll=o = l. 
Therefore we find that N(q = 0,6) = N(6) is simply the number of boxes 
needed to cover the set, and Dq=o = D equals the fractal dimension of the 
set. In the limit q -+ 00, we find that Doo = amin, whereas D-oo = a max · 

Because of the singularity, 1/(1- q), in the definition of D q , we must 
take a little care in the evaluation of N(q,6) for q -+ 1. Noting that 
J-ll = J.liJ.ll- 1 = J.liexp{(q -1)lnJ.ld, and using that exp{(q - l)lnJ.ld-+ 
1 + (q - 1) In J.li, in the limit q -+ 1, we find that 

In ( ~!'1) -> In { 1 + (q - 1) ~l'Ilnl'l } "" (q - 1) ~!" In!,. 

Here we have used Li J-li = 1. We therefore find that Dq=1 is given by 

Dl = lim Li t !nJ.li . (6.56) 
6-0 n 

This dimension describes the scaling behavior of the partition entropy of 
the measure on the set S. The entropy S(6) defined in statistical physics 
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for probabilities {J.ti} distributed over boxes of size 6 is given by 

S = - LJ.ti InJ.ti -- -Dlln 6 . 
i 

(6.57) 

In terms of the relations derived in the previous section we conclude that 
for q = 1 we find Q = J = D1 • 

In order to get some feeling for the spectrum of dimensions let us con­
sider the normal Euclidian case. For a uniform measure in E-dimensional 
space with a constant density of points, we divide space into N = 6-E cells 
with a volume of 6E each. Then J'i = 6E , and we find 

N 

L:J.tl = L:5qE = 5(q-l)E . 
i=1 i=1 

We find, using this result in the definition (6.55), that the spectrum of 
fractal dimension Dq for a uniform measure in space equals the Euclidian 
dimension: 

1 In 6(q-l)E 
Dq = --1 lim I 6 = E . q - 6-0 n 

(6.58) 

Therefore we have the result that the spectrum of fractal dimensions is E 
for a uniform measure and is independent of the moment order q, i.e., it has 
no structure. This result also explains the use of the factor (1 - q) in the 
definition of Dq. In passing, we note that the entropy is S = - Ei J.ti In J.ti = 
In N = - E In 6, so that the entropy dimension is indeed E. 

In figure 6.9 we have plotted the spectrum of fractal dimensions Dq as 
a function of the moment order q for the Cantor bar shown in figure 6.7. 

6.10 Multifractal Rayleigh-Benard 
Convection 

A remarkable application of these ideas to observations of the hydrodynamic 
instability in thermal convection has been made by Jensen et al. (1985). 
They studied the thermal convection of mercury in a small cell 0.7 cm x 
1.4 cm in area and 0.7 cm high. With the bottom temperature fixed at 
Tbottom = Ttop + AT, that is, above the temperature at the top surface, 
convection in the form of two rolls with a horizontal axis occurs. 

Increasing the temperature difference AT beyond some critical value 
results in an instability of the convection rolls, which start to bend with a 
frequency Wo ~ 230 mHz. Jensen et al. perturbed this system by placing 
the cell in a horizontal magnetic field and sending an electric ac current 
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FIGURE 6.10: The experimental attractor for thermal convection. The time 
series of temperatures, Xt, is used to plot the temperature at time t+ 1, i.e. 
Xt+l, versus Xt. The figure corresponds to a projection of the attractor of 
the motion in phase space (Jensen et al., 1985). 

between the bottom and top at the center of the cell. The frequency of 
the ac current is Wac = n Wo. The ratio of the two frequencies n is the 
winding number and is chosen to be an irrational number - the golden 
mean: n = ngm = (v'5 - 1)/2. The reason for this particular choice is 
found in dynamic systems theory. 

The result of this perturbation is that the temperature measured with 
a thermometer near the bottom of the cell fluctuates irregularly in time. 
A record of these fluctuations is a time series of temperatures, :ttl where t 
is time in units of the time interval between observations. In figure 6.10 a 
plot of Xt+l as a function of Xt is shown for 2500 observations of Xt. The 
set of points reflects the strange attractor in phase space for the motion 
of this system. The points on the attractor representing the time series 
are concentrated with various intensities in different regions. Some of the 
bunching of points observed is due to the fact that the points in figure 6.10 
represent a projection of the true attractor in phase space. However, by 
using a three-dimensional space with coordinates (Xt, Xt+l, Xt+2) to rep­
resent the time series, this projection effect becomes negligible, and the 
experimental data are in fact analyzed in this space. 

Jensen et al. analyzed the experimental results as follows. Start from 
a given point Xt on the orbit in figure 6.10 and count the number mt 
of steps along the time series required before the point returns to within 
a distance 6 of the starting point. An estimate of the probability Pt of 
being in a hyper-cube of side 6 is Pt - l/mt. Now evaluate the measure 
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FIGURE 6.11: The J(a) curve for thermal convection. The points are 
estimated from the observed time series. The curve is the J(a) curve for 
the critical circle map. Note that there are no free parameters and the 
observations fit the theory remarkably well (Jensen et aL, 1985). 

Md(q,6) given in equation (6.49). Remember, however, that the sum in 
equation (6.49) is over the boxes needed to cover the set of points - not a 
sum over the points. This is easily corrected because the number of points 
in the i-th cell is ,..., LtEi l/Pt. From the experimental points one obtains 

Md(q,6) '" 6d L:(mt(6»)1-q • (6.59) 
t 

The measure in equation (6.59) is evaluated for cell sizes 6 that vary over 
two orders of magnitude and the critical dimension is obtained from a log­
log plot of the relation 

L: mt(c5)(l-Q) ,..., c5- T (Q) • 

t 

(6.60) 

Having obtained the critical dimension one finds a(q) and J(q) from 
the equations (6.48). The experimental points obtained in this way are 
plotted in figure 6.11. The error bars on the experimental points have 
been obtained by varying the range in 6 over which the power law in equa­
tion (6.60) is fitted to the observations. The general shape of the observed 
J(a) curve is similar to the curve for the two-scale Cantor bar shown in 
figure 6.8. Note that this analysis uses more of the experimental infor­
mation than is contained in figure 6.10 since Pt explicitly depends on the 
time-sequence of points in figure 6.10. 

The truly remarkable fact is that the curve in figure 6.11 is not a fit to 
the observations but an independently calculated curve for the circle map 
with a golden mean winding number! 
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The circle map is an iterative mapping of one point on a circle to 
another. Specify points on a circle by giving the angle (J to that point mea­
sured from some direction. Start with an arbitrary point (Jo and generate 
a series of points by the repeated application of the mapping 

(In+l = (In + n - :~ sin 21r(Jn • (6.61) 

This mapping has been studied in great detail (see for example Jensen et al., 
1983, 1984a,b) and it has a strange attractor for the critical cycle obtained 
with the critical value J{ = 1 and with a winding number n = ngm. The 
curve in figure 6.11 is the /(0:) curve for this circle map. 

The results in figure 6.11 show that thermal convection perturbed at 
the golden mean winding number and the critical circle map have the same 
fractal structure, and therefore belong to the same universality class. In 
addition, the fractal dimension of the set is the maximum value found for 
/, giving / = Do = 1, which is expected since the support of the measure 
is the circle, which is one-dimensional. For a further discussion see also 
Procaccia (1986). 

In conclusion we remark that the determination of the proper pi's is 
by no means a trivial enterprise. In fact, the determination of the correct 
procedure for the determination of the measure equation (6.32) for an ex­
perimental set is analogous to identifying the order parameter for a phase 
transition. Once the order parameter for a phase transition is identified the 
whole machinery of the Landau theory of phase transitions applies, and the 
critical behavior may be calculated using renormalization group methods. 
However, in order to determine the order parameter a deep insight into the 
phenomena at hand is required. 

6.11 DLA and the Harmonic Measure 

Consider the cluster generated by the diffusion limited-aggregation (DLA) 
process in figure 3.3. How can we best characterize the surface or perimeter 
of such fractal structures? The harmonic measure affords a method of 
quantitatively characterizing such surfaces. This (probability) measure is 
defined (with respect to a particular cluster) as the probability, p(r) dr, 
of a random walker approaching the cluster from infinity first striking the 
cluster between the points rand r + dr along the boundary of the cluster. 

In practice one estimates the harmonic measure using simulations. 
First a DLA cluster is grown by the Witten-Sander algorithm and the 
growth is stopped when the cluster contains a large number N of particles 
and has a diameter L. The DLA cluster shown in figure 6.12a is typical. 
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FIGURE 6.12: The result of a simulation in which 106 random waIk particles 
were used to probe the surface of a two-dimensional off-lattice DLA cluster. 
After a particle had contacted the cluster, it was removed and a new particle 
started on a random walk trajectory from a random position on a circle 
enclosing the cluster. (a) The DLA cluster containing 50,000 particles. 
(b-d) show the location of the particles in the cluster which were contacted 
at least once, > 50 times and > 2500 times (Meakin et aI., 1986). 

It has no loops, and the number of sites in the perimeter, Np, i.e., 
the number of possible growth sites, is proportional to the number, N, of 
particles in the cluster. They both scale with the radius of gyration Rg , or 
the diameter L of the cluster: 

(6.62) 

Here the fractal dimension of DLA clusters is D = 1.71 in two dimensions. 
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FIGURE 6.13: (a) The /(0:) curve for the harmonic measure on DLA clus­
ters. The largest cluster used in the estimate contained 150 particles (Ami­
trano et al., 1986). (b) The /(0:) curve for the harmonic measure calculated 
for a viscous fingering structure (similar to the one shown in figure 4.5b) 
observed in a Hele-Shaw cell (Nittmann et aI., 1987). 

The possible growth sites on the perimeter of the DLA cluster are numbered 
with the index k = 1, ... , Np. 

The harmonic measure is estimated for the given DLA cluster in a 
further simulation in which a large number .Af of random walk particles 
are used to probe the surface of the DLA cluster. After a particle has 
contacted the cluster, it is removed and a new particle is started on a 
random walk trajectory from a random position on a circle enclosing the 
cluster. The probability Pic of a random walker contacting the k-th site 
on the perimeter is estimated to be Pic = .Aflc/.Af, where .Aflc is the number 
of times the k-th site was contacted. The set of probabilities 

(6.63) 

represents the increments of the harmonic measure M1t, at the resolution 6 
corresponding to the diameter of the diffusing particles. For recent discus­
sions of this measure see Meakin (1987b,c) and Hayakawa et al. (1987). 

The spectrum of fractal dimensions for the harmonic measure is ob­
tained as in section 6.7. However, a slight modification is required because 
one uses a fixed particle diameter 6, and studies the effect of increasing the 
diameter L of the cluster. Equation (6.33) then becomes 

(6.64) 
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Makarov (1985) has shown that the information dimension, I(q = 1), 
is exactly 1 for the harmonic measure on the boundary of any connected 
domain in two dimensions. Simulations are required for other values of 
q. The tips have the highest probabilities and dominate the sum in equa­
tion (6.64), for q ~ 1. Accurate estimates of Dq may be obtained in this 
range. However, for q < -1, one finds that the sum is dominated by 
the smallest probabilities and they are very difficult to estimate accurately 
since the probability of a random walker reaching the bottom of the 'fjords' 
is practically zero. Once r(q) is obtained from the simulations one finds 
the Lipschitz-Holder exponent a, and the fractal dimension I(a) of the 
subsets Sa where the harmonic measure has singularities with exponent a, 
using the pair of equations (6.48). Amitrano et al. (1986) used an electro­
static formulation of the DLA problem and solved the resulting equations 
numerically. The I(a) curve they obtained is shown in figure 6.13a. Note 
that I( a) is the fractal dimension of a subset of the sites that support the 
harmonic measure and therefore we expect I(a) > O. The negative val­
ues of I(a) in figure 6.13a are an artifact that results from averaging many 
independent simulations for the probabilities PI: (see also Meakin, 1987b,c). 

The harmonic measure gives a useful characterization of the compli­
cated surface of fractal clusters. One expects the maximum of the I(a) 
curve to occur at q = O. But p~ = 1 and one finds that N(q = O,L) is 
simply the number of perimeter sites Np , and therefore fmax = D = 1.71. 
The simulations by Amitrano et al. (see figure 6.13a) gave Imax ~ 1.5. 
This low value may be attributable to the fact that they could handle only 
rather small clusters containing < 150 particles. The maximum value of 
I, estimated from the analysis of the harmonic measure for the viscous 
fingering structure (figure 6.13b), is even lower. 
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FIGURE 6.14: Fractal viscous fingering with a fractal dimension 
D = 1.64 ± 0.04 in a two-dimensional porous medium consisting of a layer 
of I-mm glass spheres placed at random and sandwiched between two plas­
tic sheets. Air (black) displaced glycerol at a capillary number Ca of 0.15. 
The structure was observed at a time t = 0.8 to, where the breakthrough 
time is to = 28.6 s (Malszsy et al., 1987b). 

6.12 Multifractal Growth of Viscous Fingers 

The viscous fingers that occur in the displacement of high-viscosity fluids 
by low-viscosity fluids in porous media generate fractal structures (see fig­
ure 4.7) that bear a remarkable resemblance to the fractals that arise in 
DLA (see figure 3.3). Recently it was shown that the dynamics of DLA 
and viscous fingering is also the same. The length of the longest finger 
and the radius of gyration as a function of time are the same for the DLA 
simulations and the experimental observations on two-dimensional viscous 
fingering in porous media (Meakin, 1987a; Malszsy et al., 1987a,b). 

The multifractal nature of the harmonic measure for DLA clusters was 
discussed in the previous section. The distribution of pressure gradients at 
the surface of the growing viscous fingering structure corresponds to the 
harmonic measure in DLA. However, this pressure gradient is not acces­
sible experimentally. We have introduced a new measure, the new-growth 
measure, that gives a multifractal characterization of the growth dynamics 
of viscous fingers (Malszsy et al., 1987b). 
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FIGURE 6.15: Active growth zone of the viscous fingering structure shown 
in figure 6.14. The time between the two pictures used to construct the 
growth zone was 2.8 s, which corresponds to a relative time increment of 
at/to = 0.10 (Ma.l~y et al., 1987b). 

Figure 6.14 shows a viscous fingering structure obtained in an experi­
ment in which air displaces glycerol at a high capillary number. The viscous 
fingering structure grows mainly at the tips. The new pores invaded in a 
small time interval as shown in figure 6.15. 

In our experiments we measure the 'mass' mi of the growth 'islands' 
shown in figure 6.15. The islands are numbered in an arbitrary way by the 
index i = 1,2, ... , NI, where NI is the number of sites at which we observe 
growth. Let the total mass of the islands be mo = E~I mi, and introduce 
the normalized mass p: 

mi mi 
Pi = Emi = mo (6.65) 

The set M = {J.'i} characterizes the observed growth of the structure. This 
set represents the increments in the underlying new-growth measure MM at 
the resolution of the experiment. This new measure is to be distinguished 
from the harmonic measure M1l discussed in section 6.11, in the context 
ofDLA. 
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Any experimentally observed viscous finger structure is a realization 
of a stochastic process. At any instant the growing finger structure may 
invade any pore on the perimeter of the structure. We label the perime­
ter sites with the index k. The dynamics of the finger growth is then in 
principle controlled by the set 1{ = {pd of probabilities that the k-th 
pore on the perimeter is invaded next. The set 1{ of growth probabilities 
are the increments in the harmonic measure M1t of the viscous fingering 
structure, at the resolution of the experiment. The measure M1t changes 
as soon as a pore is invaded since the perimeter of the structure changes. 
The actual growth at any site changes the growth probabilities at all the 
other sites. The new-growth measure MM expresses the integrated effect of 
the sequence of pore invasion processes and we conclude that MM is only 
indirectly related to the harmonic measure. 

In the following sections we analyze experiments on viscous fingering 
in terms of the fractal new-growth measure. 

The Fractal Set of Growth Sites 

Consider the set of points N at which we have observed growth, i.e., the 
set of pores from which further growth has occurred. The points in this 
set have Pi > 0, and the set JI is the old-growth - new-growth interface. 
The number of points in JI is N J and increases with the size of the viscous 
fingering structure. For a fractal structure we expect NJ to be given by 

( R )DI 
NJ = aT· (6.66) 

Here DJ is the dimension of the growing interface, [) is the pixel size at 
which the structure is analyzed and Rg is the radius of gyration. We 
could equally well have used the length of the longest finger instead of 
the gyration radius Rg , because these lengths are proportional within the 
experimental uncertainties. Equation (6.66) gives an increase in NJ with 
increasing size of the growing finger structure, and a decrease in NJ, as the 
pixel size [) is increased, decreasing the resolution at which the set of points 
JI is analyzed. 

We have counted NJ for three sequences of pictures of our experiments. 
In figure 6.16 we have plotted NJ as a function of the corresponding radius 
of gyration Rg on a log-log plot. From the fits in figure 6.16 we find that 
the set of points N is fractal with a dimension 

DJ = 1.0±0.1, (6.67) 

and with an amplitude a = 1.1 ± 0.5. The old-growth - new-growth 
interface is a fractal dust in the plane, and has a fractal dimension of 1. 
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FIGURE 6.16: The number growth sites as a function of the radius of gy­
ration for three experiments in which air displaces glycerol. The straight 
lines represent fits of equation (6.66) to the observed values. The parame­
ters of the fit are: • - a = 0.9 ± 0.2, DI = 1.01 ± 0.05 .• - a = 1.7 ± 0.6, 
DI = 0.87 ± 0.08. 0 - a = 0.6 ± 0.1, DJ = 1.11 ± 0.04. The fractal 
dimension of the growing interface is DI = 1.0 ± 0.1. 

The box-counting dimension of the set of points .N at a given radius 
of gyration is obtained by changing the box size S. We find by fitting 
equation (6.66) to the observed box counts, for intermediate box sizes, 
an estimate for the old-growth - new-growth interface fractal dimension: 
DI = 1.0±O.2. The estimate is uncertain because the observed set of points 
.N is only a finite sample of the underlying fractal measure. Of course, for 
any finite set of points one finds that NI(S -+ 0) = constant, corresponding 
to dimension zero. The crossover to D = 0 is simply due to the finite 
resolution of our observations. 

Meakin and Witten (1983) and Meakin et al. (1985) have studied 
the growing interface in DLA simulations and found that NI increases as 
Ng. 625:J::O.02 , where No is the cluster mass. This result implies a dimension of 
DI = 1.07 ± 0.04, since No ,..., Rf, where D = 1.71 is the fractal dimension 
of DLA clusters. Meakin and Witten (1983) also determined the number 
of particles NI touching an initial cluster of size No after J( particles had 
been added to the cluster. They found that the number N J approached a 
limit when J( -+ 00, so that NI depends on the cluster structure alone and 
does not depend on J( in the limit of large J(. 

We have a satisfying agreement between experiment and simulation 
and we conclude that both experiments and simulations give DJ ~ 1 as the 
fractal dimension of the old-growth - new-growth interface. 
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The f(a) Curve 

So far we have only discussed the set of points at which Pi > o. We may 
specify a subset N'~, consisting of all the growth sites for which P < Pi < 
P + .6.p. If we specify the measure in a scale-independent way we may find 
that such subsets are fractal sets. We therefore choose to specify subsets of 
the growth sites by a Lipschitz-Holder exponent a, as in equation (6.19): 

(6.68) 

This relation simply gives a definition of a: 

In J.' 
a = In(6/Rg ) • 

(6.69) 

We could, of course, equally well choose the length of the longest finger 
instead of Rg in the definition of a. This would only correspond to a shift 
in a that is irrelevant for large clusters. 

Let us choose a to be in the range a to a + .6.a. From equation (6.68) 
we then find the corresponding range of Pi for a finger structure having a 
radius of gyration Rg , observed at a resolution 6. The set of growth sites 
that have islands that give J.'i in the specified range form a set of points 
N'ex. The set of all growth sites may then be written as the union of such 
sets: 

(6.70) 
ex 

If N'ex is a fractal set, then we expect the number of points in the set, 
Nex (6, Rg), to satisfy a scaling relation similar to equation (6.66): 

(6.71) 

The number of points in the set is proportional to the range .6. a , so we 
have introduced the density, Pex, that is independent of this range. At this 
point let us again stress that the finite sets of points, which we necessarily 
consider when we discuss experimental results, only represent samples of 
the fractal sets Sex, which are defined only in the asymptotic limit of infinite 
systems or infinite resolution. 

Equation (6.71) may in principle be used to determine the fractal di­
mension J(a) of the set that 'supports' the values of the measure specified 
by a, in the same way we determined the fractal dimension of the growth 
sites in the previous section. Unfortunately, we find that our models are 



SEC. 6.12 • MULTIFRACTAL GROWTH OF VISCOUS FINGERS 101 

too small to allow this direct approach to be used. We may nevertheless 
get an estimate for the I ( a) curve using the measured values of Pi. First 
we note that we may find the maximum value of 1(0:) by using the fact 
that the total number of growth sites is given by 

NJ = J da: pea:) . (6.72) 

From equation (6.66) and equation (6.71) we then find that 

(R )DI J (R )J(er) 
a / = daber / (6.73) 

This relation is valid for a large range in Rg and c if the integrand has 
a sharp maximum at some value ao. If this is the case, we may evaluate 
the integral by the method of steepest descent and we find that 

(6.74) 

The amplitude a depends on the functional form of ber and I(a) , and cannot 
be determined in a general way. We also note that since the sets Ner are 
subsets of the set of growth sites we have the relation 

(6.75) 

consistent with equation (6.74). 

To obtain the I( a) curve we use the observed values of {Pi} to make 
a histogram of p( 0:) and plot 

I( )=In(p(a))-lnbo 
a In(Rg/c)' (6.76) 

as a function of a given by equation (6.69). The parameter bo represents 
the scale-independent part of the integral in equation (6.73), and is chosen 
so that the maximum value of f(a) is D1, which occurs for bo ,...,. 1.4. The 
result of this analysis for three independent experiments is shown in fig­
ure 6.17. Note that ber may in principle depend strongly on a. Therefore 
using ho instead of her in equation (6.76) in the analysis of the experi­
ments implies that we obtain an effective exponent I(a). High-resolution 
experiments are required in order to determine the functional form of the 
amplitude her. 
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FIGURE 6.17: The 1(0:) curve for the fractal new-growth measure describing 
the dynamics of viscous fingering in porous models. Filled and open circles 
correspond to structures having Rg /6 ,..., 170 and 80 pixels, respectively. 
The curve is the 1(0:) obtained from r(q) (Mal!2ly et al., 1987b). 

The Moments of the Measure 

The fractal measure defined on the growth sites may also be analyzed by 
considering the moments of the observed measure Pi, defined by 

Nr (R ) 'T(q) 
N(q, 6, Rg) = tt p1 = N(q) -t . (6.77) 

For q = 0, we find that N(q = 0, Rg) equals the total number of islands NJ 
in the growth zone. We see from equation (6.66) and equation (6.77) that 
r(q = 0) = D1 , and N(q = 0, Rg) = a. 

We determine r(q) from fits of equation (6.77) to the experimental 
results, and determine 1(0:) and a from the relations (6.48). Using this 
transformation we converted the average r( q) curve to the I( 0:) curve shown 
in figure 6.17. 

Large values of a represent small Pi' In our experiments we find it very 
difficult to determine very small values of J.L because of the finite experi­
mental resolution. This limits the accuracy of our results for large values of 
0:. The same set of observations {pd, for three different experiments and 
thirteen different observations of the growth zone, have been used both in 
the present r(q) analysis and in the direct analysis of the previous section. 
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The scatter of points found in the direct analysis gives a better representa­
tion of the limited experimental resolution than the smooth averaged curve 
determined from r(q). Note that in both cases we used the observations of 
the scaling properties of NJ to fix unknown amplitudes. This in effect sets 
the maximum of f ( 0:) to 1. 

We emphasize that the harmonic measure M'H. is different from the 
new-growth measure MM representing the observed growth. The perimeter 
of DLA clusters is proportional to the cluster mass. All the perimeter sites 
have a probability of being hit by a random walker - they are the support 
of the harmonic measure. Therefore one expects that f( 0:) has a maximum 
value of 1.71, at an 0: value corresponding to q = O. By contrast, the new­
growth measure is supported by the new-growth sites N. This set of sites is 
a fractal set with dimension DJ ~ 1. Therefore one expects the maximum 
of f(o:) to be D/. The simulation estimating M'H. by Amitrano et al. (1986) 
has a value of fmax ,..., 1.5, which is close to the fractal dimension 1.7 of the 
DLA aggregates. 



Chapter 7 

Percolation 

Broadbent and Hammersley (1957) discussed the general situation of a fluid 
spreading randomly through a medium, where the abstract terms 'fluid' and 
'medium' could be.interpreted according to context. 1 The randomness may 
be of two quite different types. In the familiar diffusion processes the ran­
domness is the random walks of the fluid particles - an example is the 
irregular thermal motion of molecules in a liquid. The other case in which 
the randomness is frozen into the medium itself, was christened a percola­
tion process by Hammersley, since it behaves like coffee in a percolator. 

Diffusion processes, such as the spreading of a solute in a solvent or 
electrons moving in a semiconductor, are well-understood processes. See 
chapter 9 for the interpretation of diffusion processes as random walks. 

A diffusing particle may reach any position in the medium. Percolation 
processes are different. The most remarkable feature of percolation pro­
cesses is the existence of a percolation threshold, below which the spreading 
process is confined to a finite region. An example discussed by Broadbent 
and Hammersley (1957) is the spread of a blight from tree to tree in an 
orchard where the trees are planted on the intersections of jt. square lat­
tice. If the spacing between the trees is increased so that the probability 
for infecting a neighboring tree falls below a critical value, Pc, then the 
blight will not spread over the orchard. The percolation threshold for this 
problem is the probability Pc = 0.59275 for site percolation on a square 
lattice. Another example is the seepage of water, and perhaps radioactive 
waste, in the cracks and fractures of a rock formation. The question is 
whether the water is contained or will spread into other formations. Again 
a critical threshold for the concentration of cracks is expected. The value 
of the percolation threshold has to be determined by simulations. A similar 

1 For an account of the motivation for early work on percolation see Hammersley 

(1983). 
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problem of great practical interest is the spread of water displacing oil in 
porous rocks. Here the advancing fluid front may trap regions of oil, leading 
to invasion percolation, as discussed by Wilkinson and Willemsen (1983). 
The randomness encountered by the invading fluid now also depends on 
the dynamics through the formation of trapped regions. The concepts of 
percolation theory also apply to the propagation and interconnection of 
cracks and fractures in rocks and engineering materials. 

There is no sharp distinction between percolation processes and diffu­
sion in many applications. An important case is the diffusion of particles 
from a source. The resulting diffusion front has a geometrical structure 
that is closely related to the fractal geometry of percolation. This fact was 
first noted by Sapoval et al. (1985). We discuss this interesting case in 
section 7.9. 

There is now a vast literature on percolation processes. A very nice 
introduction has been written by Stauffer (1985). Aharony (1986) and 
Aharony and Stauffer (1987) give a concise presentations and discuss sev­
eral important applications. Earlier reviews by Shante and Kirkpatrick 
(1971), Kirkpatrick (1973), Stauffer (1979) and Essam (1980) give many 
essential details. Interesting contributions on recent developments in per­
colation theory and extensive bibliographies are found in the proceedings 
of various meetings - see for instance Deutscher et al. (1983), Pynn and 
Skjeltorp (1985), Englman and Jaeger (1986) and Pynn and Riste (1987). 

The percolation problem is quite easily described and it leads to a 
wealth of very interesting fractal structures. We will mostly illustrate the 
concepts using two-dimensional percolation on a square lattice. 

7.1 Site Percolation on a Quadratic Lattice 

We occupy at random a fraction, p = 0.5, of the nodes of a square grid, 
i.e., a quadratic lattice, by objects as illustrated in figure 7.1. The ob­
jects illustrate pores in a matrix, and neighboring pores are connected by 
small capillary channels. A fluid injected into any given pore may only in­
vade another pore that is directly connected to that pore through capillary 
channels or 'bonds.' The pores or 'sites' connected to the chosen center 
of injection form what is called a cluster. In figure 7.1 the largest cluster 
contains 46 sites, the next largest 29 sites, and so on. There are several 
clusters that contain only one pore. By studying figure 7.1 one quickly 
notes that none of the clusters spans the lattice. Thus, it is not possible to 
inject a fluid into a site on the left edge and have it come out somewhere 
on the right edge for the structure shown. 
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FIGURE 7.1: A quadratic lattice with one half of the nodes occupied by 
'pores' is shown to the left. Connected regions, or 'clusters' are shown to 
the right. The largest clusters are distinguished by using different symbols 
for the pores. The lattice consists of L x L nodes with L = 20. 

The effect of increasing the probability P of having an open pore on 
a site of the lattice is shown in figure 7.2 (a color version of this figure is 
found in the insert following the Contents). Clusters of various sizes are 
shown in different colors. The largest cluster (colored white), is seen to 
grow from a finite size at P = 0.58 into a very large cluster that contains 
a large fraction of the sites at P = 0.62. At P = 0.6 the largest cluster 
spans the lattice, connecting the left and right edges to the bottom edge. 
This cluster is called the spanning cluster or the percolation cluster. If the 
simulation is repeated one finds, of course, a new configuration of clusters. 
The spanning cluster first appears for P = Pc ~ 0.593. Simulations on very 
large lattices have shown that the probability for having a spanning cluster 
vanishes as L -+ 00 when P < Pc. A finite fraction of the sites belong 
to the spanning cluster when P > Pc. The critical probability at which the 
spanning cluster first appears is Pc = 0.59275±0.00003, for site percolation 
on a quadratic lattice (Ziff, 1986). 

The percolation probability, Poo(p), is defined as the probability that 
a fluid injected at a site, chosen at random, will wet infinitely many pores. 
Note that the probability for having a pore at all at the site where fluid 
injection is attempted is p. The probability that the fluid wets infinitely 
many pores when it is injected into a pore that is known to belong to a 
cluster is Poo(p)/p. In practice we must consider finite systems consisting 
of N pores. For quadratic lattices N = LE , where E = 2 is the Euclidian 
dimension of the space where the lattice is situated. In a simulation we 



FIGURE 7.2: The effect of increasing the occupation probability p on a 
160 x 160 quadratic lattice. From top to bottom we have p= 0.58, 0.6 and 
0.62. In each of the three figures the largest cluster is shown in a light 
color. Smaller clusters are shown in darker shades. Unoccupied sites are 
black. A color version of this figure is included in the insert that follows 
the Contents. 
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FIGURE 7.3: The probability, PN(p), of a site belonging to the largest 
cluster as a function of the probability P that a site is an open pore on an 
L x L square lattice. The full curve is obtained for L = 450, and the broken 
lines with L = 200 and 50. The vertical line is at P = Pc = 0.59275. 

determine the number of sites, M(L), that belong to the largest cluster 
on the L x L lattice and estimate PN(p) to be M(L)/ L2 averaged over 
many simulations similar to those shown in figure 7.2. The percolation 
probability is then given by 

(7.1) 

For the quadratic lattice we have estimated PN(p) from simulations 
on L x L lattices with L = 50, 200 and 450 and we have we used 200, 
100 and 10 independent samples respectively for these sizes. The resulting 
estimates of the percolation probability are shown in figure 7.3. For low 
concentrations, p, of pores we find that PN is negligible. As p is increased 
the probability of belonging to the largest cluster increases drastically near 
Pc = 0.593, and then PN increases almost linearly to 1 as P -t 1. The 
percolation transition at Pc becomes sharper as L is increased. 

The critical probability is defined as the largest value of p for which 
Poo = O. This may formally be written as 

Pc = sup {p, such that Poo(p) = 0 } . (7.2) 

Thus, by definition, we have Poo(p) = 0 for P < Pc. The percolation process 
undergoes a transition from a state of local connectedness to one where the 
connections extend indefinitely. Extensive simulations and theoretical work 
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have shown that the percolation probability vanishes as a power-law near 

Poo(p) - (p - Pe)", for p > Pc , and P -+ Pc . (7.3) 

The exponent f3 is 5/36 = 0.1389 ... for two-dimensional percolation 
processes, and f3 ~ 0.4 for three-dimensional percolation. This is analo­
gous to what happens at magnetic phase transitions, where the local order 
of magnetic moments increases in range as the temperature is lowered to 
the transition temperature, Tc , of the material. Below Tc , the magnetic 
moments are aligned, on the average, throughout the sample and we have 
a magnet. Many of the theoretical methods used to study phase transi­
tions have been applied to percolation problems. Also the various critical 
exponents have been defined in analogy with the theory of phase tran­
sitions. The magnetization m(T) vanishes as a power-law (Tc - T)" for 
many magnetic materials near the critical point. The exponent f3 is in the 
range 0.3-0.5 for most three-dimensional phase transitions. In the simu­
lations one finds, of course, that PN is finite even for p < Pc. It should 
be noted that in the simulations used to obtain figure 7.3, we find many 
examples where the largest cluster almost connects two opposite sides of 
the lattice for p ~ Pc. These cases are not included in the estimates shown 
in figure 7.3. 

7.2 The Infinite Cluster at Pc 

How does the mass, or number of sites, M(L), of the largest cluster grow 
with the size, L, of the lattice? For P > Pc, we expect that M(L) ~ PN(p) X 

L2, which tends to Poo(p)L2 for L -+ 00, and Poo(p) is simply the density 
of sites that belong to the percolating cluster. For P < Pc, on the other 
hand, we expect that M(L )/ L2 -+ 0 as L -+ 00, since Poo(p < Pc) = O. At 
Pe, one expects M(L) to increase almost as L2. The dependence of M(L) 
on L has been studied extensively with the result2 

{
In L, for P < Pc , 

M (L) - LD, for p = Pc , 
L-oo 

LE for P > Pc . 

(7.4) 

The mass of the percolating cluster is a finite fraction of the sites for P > Pe. 
Below Pc there is in general no spanning cluster. However, if one interprets 

2Note that we use the sign f',J both for asymptotically equal to and for asymptotically 
proportional to. This is customary in the percolation literature and makes it unnecessary 
to introduce symbols for the constants of proportionality (prefactor) that belong on the 
right-hand side of this equation. 
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FIGURE 7.4: The mass of the largest cluster as a function of the linear 
dimension L of the quadratic lattice. Filled circles are for P = Pc = 0.593. 
The solid line is M(L) = ALD with D = 1.89. For P = 0.65 (open boxes) 
a fit (dashed line) gives D = 2.03. The results for P = 0.5, i.e., below Pc, 
have been fitted to the form M(L) = A + BIn L, shown as the dotted line 
through the open circles. 

M(L) to be the size Smax of the largest cluster (e.g., Stauffer, 1985), then 
one finds that M(L) increases only very weakly, i.e., logarithmically with 
L. 

At the percolation threshold, P = Pc, the mass of the spanning cluster, 
which is also the largest cluster, increases with L as a power-law, LD . 
Simulations on the square lattice give the results shown in figure 7.4. These 
results show that the percolation cluster at threshold is fractal with a cluster 
fractal dimension Dj see equation (3.1). The fractal percolation cluster at 
threshold is often called the incipient percolation cluster. For the results 
shown in figure 7.4 we estimate D ~ 1.89 ± 0.03. Here the quoted errors 
are only statistical and represent the quality of the fit of the power-law 
to the results of the simulations shown in figure 7.4. Systematic errors are 
delicate to handle. When the percolation cluster on a finite lattice of side L 
is considered to be only a part of the incipient percolation cluster, then some 
of the sites not included in the percolation cluster on the scale L are really 
part of the incipient percolation cluster since they are connected to it by 
bonds outside the box under discussion. For p > Pc we find that simulations 
on the quadratic lattice give a fractal dimension of D = 2.03 ± 0.01 for the 
percolating cluster. Again the error is only statistical, and D represents the 
slope of the line through the points obtained by simulations at p = 0.65, 
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FIGURE 7.5: The size of the percolation cluster at the percolation threshold 
Pc = 1/2 of the triangular lattice as a function of the linear dimension L 
of the lattice. The slope of this log-log plot for large L gives the fractal 
dimension D = 91/48 (Stauffer, 1985). 

and shown in figure 7.4. The results for the largest cluster at p = 0.5, 
shown in figure 7.4, have been fitted to the form M(L) = A + BIn L, with 
the result, B = -426 and A = 327. The dotted curve in figure 7.4 is the 
result of this fit. The results of the simulations shown in figure 7.4 are 
consistent with the asymptotic behavior given in equation (7.4). 

Sykes and Essam (1964) have shown that the percolation threshold is 
Pc = 1/2 exactly for site percolation on the triangular lattice. Therefore 
one may obtain very accurate results for the incipient percolation cluster 
by simulations on triangular lattices. The results obtained by Stauffer 
(1985) and shown in figure 7.5 give an estimate for the fractal dimension 
D consistent with the exact value D = 91/48. The numerical evidence 
suggests that this is the value for D for all two-dimensional lattice site 
percolation problems. 

We conclude that the incipient percolation cluster has a fractal struc-
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ture and the mass of this cluster increases on the average with L as 

M(L) -- ALD , D = 91/48 = 1.895 ... , (7.5) 

for site percolation on two-dimensional lattices. The average is over many 
realizations of the incipient percolation cluster. The amplitude A is the 
effective amplitude estimated from finite-size samples. This scaling law for 
the mass of the incipient percolation cluster is only valid asymptotically, 
for large L. At realistic values of L this scaling relation should be modified 
by correction terms (e.g., Margolina et al., 1984; Aharony, 1986): 

M(L) = ALD + AILDI + A2LD~ + ... , (7.6) 

with D > Dl > D2. It is difficult to determine the correction terms 
by direct simulations. Recently Aharony et al. (1985) proposed a novel 
transfer matrix method, which makes this task easier. Typically one finds 
that Dl ~ D - 1, for two-dimensional problems (Grossman and Aharony, 
1986). 

Note that the Mandelbrot-Given curve (see figure 2.13) has a fractal 
dimension of D = 1.892 ... and is a good model for the percolation cluster. 

7.3 Self-Similarity of Percolation Clusters 

The incipient infinite cluster (the percolation cluster) is statistically self· 
similar. Consider the percolation cluster at p = 0.6 shown in the middle 
panel of figure 7.2. If we view this cluster at a lower resolution then the 
details will become blurred, but it looks similar. The overall structure of 
the cluster, for instance the fact that there are holes of all possible sizes in 
the cluster, remains. This self-similarity is intimately linked to the fractal 
structure of the incipient percolation cluster, and may be made quantitative 
by real space renormalization. This renormalization is best illustrated using 
percolation on the triangular lattice, where Pc = 112. 

Consider the percolation clusters on a triangular lattice with p = Pc 
shown in figure 7.6. For the triangular lattice we may change the scale of 
the lattice by a factor b = v'3 by grouping occupied sites, i.e., open pores, 
as shown in figure 7.7. Basic cells of b2 = 3 sites are replaced by single new 
sites, which are considered to be open pores (occupied sites) if a majority 
of the sites in the cell are occupied. This rescaling ensures that a cluster of 
two or three open pores becomes an open pore in the coarse grained lattice 
shown in figure 7.7b (see Young and Stinchcombe, 1975; Reynolds et aI., 
1977). 

The result of this coarse-graining is a new lattice with a new concen­
tration pi of occupied sites. For the simple example shown in figure 7.7a 
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FIGURE 7.6: Site percolation clusters on the triangular lattice at the thresh­
old Pc = 1/2. 

we note that the probability of finding a block of three occupied sites is 
p3, since the sites are independently occupied with a probability p. The 
probability of having two sites occupied is 3p2(1- p), since there are three 
orientations of the empty site. It follows that the new concentration pi is 
given by (Reynolds et al., 1977) 

pi = p3 + 3p2(1 _ p) . (7.7) 

One may coarse-grain the new triangular lattice again, and again. In each 
iteration the new concentration of occupied sites is given in terms of the old 
concentration by equation (7.7). We have plotted in figure 7.8 the change 
in concentration, pi - p, caused by one iteration of the renormalization 
procedure as a function of the concentration of occupied sites, p, before the 
rescaling. Note that p = Pc = 0.5 solves the iteration equation (7.7), so 
that Pc is a fixed point for the rescaling. If one starts out with a lattice 
with 0 < p < Pc, then p' - p < 0, and the new concentration of occupied 
sites is less than the original concentration. Therefore, if we start with a 
large triangular lattice and apply the renormalization transformation many 
times, we eventually get a lattice of empty sites. If, on the other hand, we 
start with 1 > p > Pc then the concentration increases in each iteration 
and we will end up with a coarse-grained lattice with all sites filled, i.e., by 
open pores. At the critical point, p = Pc, we find that the renormalization 
does not change the concentration of occupied sites, and the coarse-grained 
lattice is also at the percolation threshold. The critical point is a fixed-point 
of the renormalization transformation. Of course, there are in addition the 
two trivial fixed points p = 0 and p = 1. 
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FIGURE 7.7: (a) Clusters at Pc on a triangular lattice. (b) Coarse-graining 

of the triangular lattice by a factor b = v'3. Occupied sites are shown as 

filled circles and open sites are shown as open circles. Groups of three sites 

are blocked as indicated by the shaded triangles. If a majority of the sites 

belonging to a triangle are occupied then the triangle is shaded dark. (c) 

The coarse-grained percolation lattice where filled sites correspond to dark 

triangles in (b). 
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FIGURE 7.8: The change in the concentration of occupied sites, p' - p, as a 
function of the concentration of occupied sites, p, on the triangular lattice 
before a rescaling of the lattice by a factor of b = J3. 

The effect of the renormalization procedure illustrated in figure 7.7 
on a large triangular lattice at the percolation threshold is shown in fig­
ure 7.9. Qualitatively, the pattern of occupied sites obtained by using 
the renormalization transformation twice (see figure 7 .9b) cannot be dis­
tinguished from a piece of the original lattice. Also the percolation cluster 
of the scaled lattice, shown in figure 7.9c, is qualitatively the same as the 
original percolation cluster. It is important to note that the scaling trans­
formation does not change the site occupation probability p, and therefore 
a system at Pc remains at threshold even after the scale transformation. 
It is impossible to tell from the pictures at what level of coarse-graining, 
or magnification, the pictures were taken. This aspect of self-similarity is 
illustrated by inserting a scaled version of the lattice into the originallat­
tice at some position. Statistical self-similarity implies that the resulting 
percolation cluster is an equally probable realization of the process that 
generates percolation clusters. 

The statistical self-similarity of the incipient percolation cluster may 
be used to obtain a quantitative statement for the mass of the cluster. The 
scaling law (7.5) for the mass M(L) of the cluster must also apply for the 
mass of the cluster obtained after a scaling by a factor of b. But the linear 
size of the scaled lattice is only LIb, and therefore we find that the number 
of sites, M(Llb), must be A(Llb)D. It follows from equation (7.5) that the 
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FIGURE 7.9: Self-similarity and the effect of coarse-graining on the trian­
gular lattice at the percolation threshold. The scale is changed by a factor 
b = 3, using the renormalization procedure illustrated in figure 7.7 twice. 
(a) The percolation cluster at threshold on the original 180 x 180 lattice. 
(b) The occupied sites obtained after a scaling of the original lattice in 
(a) by a factor b = 3. (c) The percolation cluster of the scaled lattice in 
(b). (d) The scaled lattice is inserted into the original lattice in the region 
marked by a frame. The figure shows the resulting percolation cluster. 
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cluster masses at the two scales are related by the scaling relation 

M{L) = bD M{L/b) . (7.8) 

This relation is valid only asymptotically in the limit of large L and Lib. 
However, it is valid for all values of the scale factor b consistent with this 
constraint. Conversely one finds, of course, that the scaling equation (7.8) 
implies a power-law behavior. Since the left-hand side of equation (7.8) is 
independent of b it follows that M{L) must be a homogeneous function, 
and the only possible form for M(L) is the power-law M(L) --.; LD. The 
fractal geometry of the incipient percolation cluster and the statistical self­
similarity are related and expressed quantitatively by equation (7.8). 

7.4 Finite Clusters at Percolation 

At percolation there is a wide distribution of cluster sizes (see figure 7.2). 
As the occupation probability is decreased below Pc the clusters gradually 
decrease in size. Above Pc, there are clusters of various sizes in the holes of 
the percolating cluster. The number of sites, s, in a cluster and its linear 
extension have characteristic distributions. The percolation threshold is 
characterized by a cluster size distribution that has no typical size, Le., it 
must be a power-law distribution. To make this statement more precise let 
us introduce the radius of gyration, Rg(s), of a cluster consisting of s sites: 

R;(s) = 2\ L:{fi - rj)2 . 
S •. 

(7.9) 
S,J 

The radius of gyration is simply the root mean square radius of the cluster 
measured from its center of gravity. Consider the finite cluster illustrated 
in figure 7.10. When the finite cluster (at Pc) is analyzed inside a box with 
side L < 2Rg(s), then it appears to be a part of the incipient percolation 
cluster spanning the box, and one finds that M,{L) --.; LD, as before. 
However, when the box size is increased beyond 2Rg, one begins to see the 
edges of the cluster. For sufficiently large L, the whole cluster fits inside 
a box of size L" and there is no doubt that the cluster is finite since the 
mass of the cluster no longer increases with L. These considerations may 
be summarized as follows: The mass, M,{L), inside a box of size L on a 
cluster that consists of s sites is given by 

M,(L) = LD f(L/Rg) ~ { A (L/ Rg)D ,for L 4::. Rg(s) , 
s , for L > Rg ( s) . (7.10) 

Here the crossover function f( x) simply tends to the constant amplitude 
A in equation (7.5) as x = L/ Rg(s) -+ O. However, since M,(L) must 
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FIGURE 7.10: A finite cluster on the square lattice at Pc. The radius of the 
circle is the radius of gyration, Rg(s) = 51, of a cluster containing 6700 
sites. The box indicated in the figure has a side L = 60. The side of the 
smallest box that contains the cluster is L, = 150. 

become independent of L for x ~ 1, we may conclude that /(x) ,.,., x-D , so 
that the term LD in front of / is canceled in equation (7.10). We therefore 
find the following relation between the radius of gyration and the number 
of sites in the cluster: 

(7.11) 

The relation s ,.,., Rg{ s)D has been confirmed by many computer sim­
ulations. In figure 7.11 we show the results obtained by Grossman and 
Aharony (1986) and Aharony (1986) for the dependence of s on L" where 
L, is the dimension of the smallest box that will hold the cluster. The clus­
ters have no intrinsic length scale independent of cluster size, and therefore 
one also expects M(L,) to scale as Lf. This is brought out clearly in 
figure 7.11. The extrapolation of the 'effective' fractal dimension es­
timated from a part of the s versus L, curve by Deff = 81n s/81n L" 
shown in the insert, gives the expected value for the fractal dimension 
D = 1.89 ± 0.01 ~ 91/48, in the limit of large clusters. The fact that Deff! 
can be fitted to a straight line in 1/ L, indicates that the leading correction 
Dl in equation (7.6) is given by Dl = D - 1. The error bars indicate the 
scatter of the values of s within 'windows' of linear size L,. The existence 
of this scatter again emphasizes the fact that the power law s ,.,., Lf ap­
plies only to the average. The fact that the error bars have fixed length on 
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FIGURE 7.11: Dependence of the cluster masses s (number of sites) on 
their linear size L 6 , for the square lattice at Pc = 0.5927. The error bars 
indicate one standard deviation around the average. The insert shows the 
extrapolation of the local slope Deff = 8Ins/8InL, to s -+ 00, where 
D = 1.89 ± 0.01 (Aharony, 1986). 

logarithmic scales leads to the conclusion that the fluctuations in s for a 
given L, are given by 

(7.12) 

Such fluctuations are referred to as lacunaritYi see Mandelbrot (1982) and 
Aharony (1986). 
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7.5 The Cluster Size Distribution at Pc 

Let us now consider the distribution of sizes for the clusters that are found 
at the percolation threshold and are illustrated in figure 7.2. Let n. be the 
average number per site of clusters containing s sites, that is, the number 
of clusters of size s that is expected on an L x L lattice is n.L2. Thus if 
we select a site at random it has a probability proportional to sn. of being 
on a cluster of size s, since there are s ways to 'hit' such a cluster. The 
normalized probability per site, c., that a site chosen at random is part of 
a cluster containing s sites is then given by 

sn. 
c. = . 

E.sn. 
(7.13) 

The normalization term L., s n., = p - p 00 is simply the fraction of sites 
that belong to finite clusters. The average cluster mass is then 

LD / 
(s) = I:s ·sn.,(L) Lsn.,. 

.=1 • 
(7.14) 

For a simulation on a finite lattice of side L, we must find that n. depends 
on L, and we have therefore written n.,(L) in equation (7.14). The sum 
extends over all the cluster sizes from the smallest, s = 1, to the largest, 
which is of the order Smax ...., LD. We may find the asymptotic dependence 
of n., (L) using scaling arguments. 

Consider an L x L lattice at the percolation threshold. A scale trans­
formation by a factor b, gives as a result an (Lib) x (Lib) lattice that is also 
at the percolation threshold. The scale transformation reduces the radius 
of gyration of a cluster containing s sites from Rg(s) to Rg(s') = Rg(s)lb. 
It follows from equation (7.11) that a cluster containing s sites is mapped 
into a cluster having only s' = s IbD sites. The probability c., L2 that a 
site belongs to an s-cluster in the original lattice is equal to the probability 
c.t(Llb)2 that a site on the (Lib) x (Lib) lattice belongs to a cluster of a 
size s' that maps into a cluster of size s and we conclude that: 

I 

b- 2 , sn. = s n.,t , with s' = slbD . (7.15) 

Here the factor b-2 on the right-hand side is due to the fact that for each 
site on the (LIb) x (LIb) lattice there are b2 sites on the Lx L lattice. The 
right-hand side must be divided by b2 since we are considering probabilities 
per site. 

The cluster size distribution depends on L only through the variable 
s I Smax ...., S I LD, because the largest cluster in an L x L lattice is limited 
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to about Smax "" LD sites. Therefore we use the following form for n6(L): 

(7.16) 

Here g(x) is a crossover function that must approach a constant value as 
s/ LD -+ 0, since the cluster size distribution must become independent of 
the size of the lattice in the limit L -+ 00. The power-law dependence in 
equation (7.16) is required since n, should satisfy equation (7.15). Inserting 
equation (7.16) into equation (7.15) we get the following equation: 

Sl-T g(8/ LD) = b-2 (s/bD)l-T 9 [(s/bD)/(L/b)D] 

= b-(2+D-TD) sl-r g(8/ LD) . 
(7.17) 

From this equation we conclude that 2 + D - T D = 0, and the cluster size 
distribution at the percolation threshold is a power-law, 

n6 "" S-T, with T = (E + D)/ D . (7.18) 

The exponent T depends on the Euclidean dimension, E = 2, of the lattice. 
We write E in the expression for T since equation (7.18) holds also for 
site percolation on hypercubic lattices with E < 6. For E > 6, special 
considerations apply; see Aharony (1986) for a discussion. 

We may rewrite equation (7.16) as follows: 

n6(L) = s-r g(s/LD) = L-DT n (s/LD) 

= L .... E-D n(s/ LD) . 
(7.19) 

Here the new crossover function n(x) is given by n(x) = x- T g(x). This 
form for n, is convenient when we want to estimate how various averages 
vary with the size L of the lattice. For instance, the average cluster size 
given by equation (7.14) is evaluated as follows: 

(7.20) 

The normalization term 2:6 s n6 = Pc, since it is the fraction of sites that 
belong to finite clusters. The last relation results because the integral 
approximation to the sum depends only on the variable x = s / LD, and is 
convergent at the limits. Therefore the integral becomes independent of L 
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in the limit of large L. This result shows that the average cluster size at 
the percolation threshold, (S)L "" L2D-E, grows more slowly with L than 
the size of the largest cluster Smax "" LD. 

In a similar way we may find the average radius of gyration of the 
finite clusters at the percolation threshold 

(7.21) 

Note that this result means that not every length scale one may define in 
the percolation problem scales as the lattice size L, since (R2(s) h is not 
proportional to L2; see Stauffer (1979). 9 

The arguments presented are typical for the scaling arguments used 
in percolation theory and in the theory of critical behavior at second-order 
phase transitions. The essential aspect of the arguments presented lies 
in the self-similar structure of the percolation process at threshold. This 
self-similarity leads to power-law dependencies of the various quantities 
considered. However, not every power-law exponent is a fractal dimension. 
Many of the exponents that arise may be expressed in terms of the fractal 
dimension and the spatial dimension of the lattice under consideration. 
The equations (7.20) and (7.21) are examples of finite size scaling used 
widely to identify critical exponents from computer simulations at Pc. 

7.6 The Correlation Length ~ 

The clusters both at Pc and away from Pc are characterized by the number 
of sites, s, in the cluster and by the radius of gyration, Rg(s), of the cluster. 
Over what distances are open pores (sites) connected? The connectedness 
length e is defined as the avemge root mean square distance between occu­
pied sites that belong to the same and finite cluster. This connectedness 
length is also called the correlation length. The connectedness length is 
then the square root of R;( s) averaged over the cluster size distribution. 

To find an expression for e, consider a site on a cluster consisting of 
S sites. The site is connected to S - 1 other sites, and the average square 
distance to those sites is R;(s). The probability that a site belongs to a 
cluster of size s is sn,. The connectedness length is consequently given by 

2 L:R;(S)S2 n6(p) e = _.::.6 _____ _ 

2::s2 n,(p) 
(7.22) 

, 
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Here we have written s instead of s - 1 for the number of sites to which 
a given sites is connected in order to simplify the expression. The cluster 
size distribution, n,(p), is now a function of p and is the average number 
per site of clusters of the finite size s. 

The equation (7.21) shows that the radius of gyration diverges with 
the system size at Pc and we conclude that e = 00 for p = Pc. Near Pc one 
finds that the pair connectedness length diverges as a power-law: 

(7.23) 

The exponent v = 4/3 for two-dimensional percolation. In fact one may 
understand how this power-law arises and obtain a very good approximate 
expression for v based on the renormalization of the triangular lattice dis­
cussed in section 7.3. When the triangular lattice at a concentration p is 
coarse-grained by a factor of b = v'3, then the new lattice has the concen­
tration p' given by equation (7.7). The new correlation length e' is given 
by the relation 

e' = e(p') = e(p)/b . (7.24) 

Near the fixed point Pc the renormalization transformation (7.7) is linear 
in (p-Pc) as shown in figure 7.8. We find by an expansion of equation (7.7) 
in (p - Pc) around Pc = 1/2 that p' may be written as 

p' = Pc + A (p - Pc), for Ip - Pcl < Pc , (7.25) 

with A = 3/2. Using this result in the equation (7.24) we find that e is a 
homogeneous function of p - Pc: 

(7.26) 

Again, the power-law equation (7.23) is the only form that satisfies this 
relation, and inserting equation (7.23) here we find that 

(7.27) 

From this equation it follows that the exponent v, which controls the di­
vergence of the correlation length at Pc, is given by 

v = In b/ln A = In..[3/ In(3/2) ~ 1.355 , (7.28) 

which is an excellent approximation to the exact two-dimensional value 
v = 4/3, found by den Nijs (1979). This derivation is a simple example of 
the general method for calculating critical exponents by therenormalization 
transformation. Note that the rescaling transformation used is approximate 
since the connectivity of the clusters may change by the transformation. A 
more detailed discussion is given by Aharony (1986). 
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We may find the behavior of the cluster size distribution, n, (p), by 
scaling arguments. Consider clusters that have radii of gyration Rg(s) < e. 
The number of sites in such clusters must satisfy the relation S < eD, since 
the radius of gyration scales as S - R~. On length scales less than e we 
have no way of telling that we are not at Pc, and we conclude that the size 
distribution on these scales must be given by equation (7.19), but now with 
the box length L replaced bye. Therefore we find that 

n _ { e-E - D N(s/eD ) , for s« eD . 
, (p) - 0 , for s"> e D • (7.29) 

The crossover function N(x) decays very quickly for x "> 1, and behaves 
as x-T for x « 1 just as the crossover function n(x) in equation (7.19). We 
may use this form of the cluster size distribution to calculate the average 
cluster size and we find that 

( ) _):, s2 n,(p) ,.... t 2D- E 
se-" "', 

L.J, S n, 
(7.30) 

by the same method we used to obtain equation (7.20). 

The probability (per site) of a site belonging to the infinite percolating 
cluster is Poo(p) for p > Pc. Any given site is occupied with a probability p, 
and belongs to one of the finite clusters with probability 2:, s n,(p). Sites 
that do not belong to the finite clusters must belong to the infinite cluster 
and therefore we find the relation 

Poo(p) = p - L: s n,(p) . (7.31) 

Using the scaling form of the cluster size distribution one finds that the 
percolation probability scales as3 

(7.32) 

From this relation we obtain an expression for the exponent f3 for the 
percolation probability: 

f3 = (E - D)v = 5/36 for E = 2 and 0.4 for E = 3 . (7.33) 

The number of sites in the largest cluster, M (L ), depends now on how 
close one is to Pc. For boxes of size L « e, the largest cluster spans the 
box and M(L) - LD. However, for L > e the sizes of the finite clusters 

3Note that one has to be careful with the limits of the integral representation of the 
sum in this case. See Stauffer (1985,1986) for a discussion. 
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FIGURE 7.12: Density of sites on the largest cluster of a square lattice at 
P - Pc = 0.35 (filled circles) and P - Pc = 0.022 (empty circles) within a 
box of size L around an occupied site. The slope for L < e is D - 2 with 
D ~ 1.9, and the plateau for L > e is Poo(p) (Kapitulnik et al., 1983). 

are cut off at e, and M(L) should cross over to M(L) = pLE, with the 
average density p given by p = Poo "'" eD-E. This crossover is controlled 
by a scaling function m( x), so that 

M(p, L) = LD m(L/e) , with e"", Ip - Pel-II . (7.34) 

Numerical simulations shown in figure 7.12 show this crossover very clearly. 

We see from the discussion in this section that the connectedness 
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length, or correlation length, e diverges at the critical concentration. The 
divergence is controlled by a power-law with an exponent that may be cal­
culated quite accurately by the renormalization transformation. In practice 
it is convenient to express the various crossover behaviors and the power­
laws near the critical concentration in terms of e. Also, one finds that the 
various exponents found near the percolation threshold are related by scal­
ing laws which express the exponents in terms of the fractal dimension, D, 
of the percolation cluster, the spatial dimension E = 2 and the exponent 
v for the correlation length. 

7.7 The Percolation Cluster Backbone 

We have discussed percolation in terms of a 'fluid' wetting 'pores' when 
injected from a single site. This discussion presupposes the pores are empty 
so that a fluid may actually enter each pore. A realization of this process 
is the injection of mercury into a porous material that has been evacuated 
before the injection process. 

Consider pores that form a connected network and are filled by an 
incompressible fluid (oil). Another fluid (water) that is injected can only 
displace the oil on the backbone of the percolation cluster. The parts of the 
percolation cluster that are connected to the backbone by only a single site 
are called dangling ends. It is sufficient to remove a single site, i.e., cut a 
single dangling bond, to separate the dangling end from the backbone. The 
driving fluid (water) cannot enter the dangling ends since the trapped oil 
has no escape route. 

The backbone consists of all the sites visited by all possible self­
avoiding walks from the injection site(s) to the exit site(s). A dangling 
end may not be visited by a self-avoiding random 'walker' since it must 
retrace at least one step to escape the region connected to the backbone 
by a single site. 

A realization of a percolation cluster and a backbone is shown in fig­
ure 7.13 for site percolation on the quadratic lattice at threshold. The 
backbone connects a single site at the center of the 147 x 147 lattice to 
the sites at the edges of the square lattice. The number of pores on the 
percolation cluster is 6261, whereas the backbone contains only 3341 sites. 

\Ve have made a physical model (Oxaal et al., 1987) of the percolation 
cluster shown in figure 7.13. The model was molded using epoxy and has 
cylindrical pores 1.1 mm in diameter and 0.7 mm high. The pores are con­
nected by 0.7 mm wide channels. The model was filled with high-viscosity 
colored glycerol. In a typical displacement experiment air is injected at the 
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FIGURE 7.13: The backbone (filled circles) and the percolation cluster from 
a simulation on a 147 x 147 quadratic lattice at Pc = 0.593 (Oxaal et aI., 
1987). 

site in the center of the model, thereby displacing the glycerol, which flows 
out of the model at the rim. The experimental result shown in figure 7.14 
very clearly illustrates the fact that displacement processes take place only 
on the backbone. 

The viscous displacement process on the fractal percolation cluster 
can be modelled numerically by solving the flow equation (4.3) with the 
appropriate boundary conditions (Murat and Aharony, 1986; Oxaal et aI., 
1987). The results of simulations for flows at high capillary numbers on the 
percolation cluster used in the experiment are also shown in figure 7.14. 

The agreement between the experiment and the simulation is very 
good. In fact 70-80% of the sites invaded by air are common to the exper­
iment and' the simulation, at any time in the invasion process. Separate 
simulations also overlap each other to about 75%. This agreement shows 
that fluid displacement at the percolation threshold is almost entirely de­
termined by geometrical effects since the numerical simulation does not 
take into account such factors as interfacial tension and wetting properties 
that are known to influence ordinary two-phase flow in porous media. 

The backbone of the percolation cluster depends on what is considered 
to be the injection site(s) and exit site(s). As an example consider the 
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a 

b 

FIGURE 7.14: (a) Air displacing glycerol at a high capillary number on the 
percolation cluster shown in figure 7.13. (b) The results of numerical simu­
lation of fluid displacement on the same percolation cluster. The different 
shades of gray represent pores invaded by air observed at successive time 
steps. The number of pores invaded by air is 30 (black), 86, 213 and finally 
at breakthrough 605 light gray, for both the experiment and the simula­
tion. The backbone is shown in very light gray color. A color version of 
this figure is included in the insert that follows the Contents. (Oxaal et al., 
1987). 
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FIGURE 7.15: Backbones of the percolation cluster on the quadratic lattice 
at Pc shown in figure 7.2b. (a) The backbone connecting a single site on 
the left-hand edge to a single site on the right-hand edge of the 160 x 160 
lattice. (b) The backbone connecting all the sites on the left-hand edge to 
all the sites on the right-hand edge. 

percolation cluster at Pc shown in figure 7.2b. The backbone connecting 
a single site on the left edge to a single site on the right edge is shown in 
figure 7.15a whereas the backbone connecting all the sites on the left edge 
to sites on the right edge is shown in figure 7.15b. 
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The backbone sites form a subset of the sites on the percolation cluster 
and every site on the percolation cluster is also part of at least one back­
bone. Since the percolation cluster is fractal with a fractal dimension of 
D = 1.89, it follows that backbones on the percolation cluster are fractal, 
and have fractal dimensions DB < D. Extensive numerical simulations (at 
Pc) have shown that the mass MB(L) of the backbone connecting the edges 
of a box with side L is given by 

(7.35) 

The estimates for the backbone fractal dimension have been in the range 
DB :: 1.62±0.02 (Herrmann and Stanley, 1984), and have recently been es­
timated to be DB = 1.61±0.02 by Laidlaw et al. (1987). The Mandelbrot­
Given curve, shown in figure 2.14, is a reasonable model for the percolation 
cluster backbone and the fractal dimension DB = 1.63 ... of that curve is 
quite close to the backbone fractal dimension. 

The viscous displacement process on the percolation cluster selects 
only a subset of the sites in the backbone. The subset selected depends 
on the capillary number. Experiments and numerical simulations (Oxaal 
et aI., 1987) indicate that the fractal dimension of the viscous fingering 
structure is D -- 1.3 at high Ca, and 1.5 at low Ca. 

In general we obtain various fractal dimensions in studying physical 
phenomena occurring on fractals. This is due to the fact that by specifying 
physical processes on the supporting fractal geometry we in effect specify 
measures on the underlying geometry. The study of physical phenomena 
on fractals therefore leads in a natural way to the multifractals discussed 
in the previous chapter. Current distributions and resistance fluctuations 
in fractal networks of (nonlinear) resistors give rise to infinite sets of expo­
nents or multifractals (see de Arcangelis et a1., 1985; Rammal et al., 1985; 
Blumenfeld et aI., 1986, 1987; Aharony, 1987). 

The backbone has many geometrical features that also are fractals. 
Consider the two points connected by the backbone shown in figure 7.15a. 
The shortest path .fmin between these points (measured by counting the 
number of sites one has to visit on the path) is found to scale with the box 
size L, i.e., the Euclidean distance between the points, as (see e.g. Havlin 
and Nossal, 1984) 

.fmin .- LDmiD, with Dmin = 1.15 ± 0.02 . (7.36) 

When one studies pictures of backbones such as the ones shown in 
figure 7.15, it becomes clear that the backbone consists of' blobs' connected 
by 'links' (Skal and Shklovskii, 1975; de Gennes, 1976; Stanley, 1977). Th.e 
links, also called red bonds by Stanley (1977), have the property that if 
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they are cut then the backbone is separated into two parts and a fluid can 
no longer flow from the injection site to the extraction site. The blobs are 
multiply connected, so that cutting a bond, i.e., removing a site, will not 
interrupt the flow. Stanley calls the bonds connecting sites in the blobs 
blue bonds. The reason for the color scheme is that in an electrical analog, 
where current flows through the percolation cluster from a single contact 
(injection) site on one end of the cluster to another contact site at the 
other end of the cluster, all the current must pass through the red bonds 
and they become hot. In the ·blobs the current may spread over many 
bonds and they remain relatively cool. The set consisting of the red bonds 
forms a subset of the sites on the backbone and is in fact a fractal set of 
points (Pike and Stanley, 1981). The number of red bonds diverges as the 
separation L between the two sites on the ends of the backbone increases 
according to a power-law: 

(7.37) 

The relation Dred = 1jv, between the fractal dimension of the red bonds 
and the exponent v that controls the divergence of the correlation length e 
at Pc, was also shown to hold rigorously in higher dimensions by Coniglio 
(1981, 1982). Almost all the mass of the backbone is in the blobs, since the 
fractal dimension of the red bonds is much less than that of the backbone. 
The fractal dimension of the sites that belong to blobs therefore equals that 
of the backbone. The Mandelbrot-Given curves (see figures 2.13 and 2.14) 
have many singly connected (red) bonds. The fractal dimension of these 
bonds is 0.63 ... , which is somewhat below Dred for the percolation cluster. 

Many more dimensions arise when one discusses transport phenomena 
on percolation clusters. In fact, one again observes multifractal behavior. 
For a recent review see Aharony (1987). 

7.8 Invasion Percolation 

Invasion percolation is a dynamic percolation process introduced by Wilkin­
son and Willemsen (1983), motivated by the study of the flow of two im­
miscible fluids in porous media (de Gennes and Guyon, 1978; Chandler et 
al., 1983). Consider the case in which oil is displaced by water in a porous 
medium. When the water is injected very slowly then the process takes 
place at very low capillary numbers Ca, as discussed in chapter 4. This 
implies that the capillary forces completely dominate the viscous forces, 
and therefore the dynamics of the process is determined on the pore level. 
In the limit of vanishing capillary numbers one may neglect any pressure 
drops both in the invading fluid (water) and in the defending fluid (oil). 
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However, there is a pressure difference between the two fluids (the capillary 
pressure) given by 

2lTcos8 
(Pin vader - Pdefender) = ; 

r 
(7.38) 

see also equation (4.4). Here IT is the interfacial tension between the two 
fluids, 8 is the contact angle between the interface and the pore wall, and 
r is the radius of the pore at the position of the interface. 

One often finds that water is the 'wetting' fluid and oil the 'non­
wetting' fluid, i.e., the contact angle 8 > 900 , and the water will spon­
taneously invade the oil-filled porous medium unless the pressure in the 
water is kept below that of the defending oil. The important point to note 
is that the pressure difference depends on the local radius of the pore or 
pore neck where the interface lies. In a porous medium one must have 
variations in r (and possibly in the contact angle) and the interface must 
adjust to positions so that equation (7.38) is satisfied everywhere. The cap­
illary forces are strongest at the narrowest places in the medium. Thus if 
all the throats are smaller than all the pores, the water-oil interface moves 
quickly through the throats, but gets stuck entering the larger pores. It is 
consistent with both a simple theoretical model and experimental observa­
tions to represent this motion as a series of discrete jumps in which at each 
time step the water displaces oil from the smallest available pore. 

Wilkinson and Willemsen (1983) proposed to simulate this process in 
an idealized medium where the network of pores may be viewed as a regular 
lattice in which the sites and bonds of the lattice represent the pores and 
the throats respectively. Randomness of the medium is incorporated by 
assigning random numbers to the sites and bonds to represent the sizes of 
these pores and throats. Simulation of the process in a given realization of 
the lattice thus consists of following the motion of the water-oil interface 
as it advances through the smallest available pore, marking the pores filled 
with the invading fluid. 

This model also applies in the case where a nonwetting fluid, say air, 
displaces a wetting fluid. In this case the pressure in the invading fluid is 
above that of the defending fluid and the interface advances quickly through 
the large pores and gets stuck in the narrow throats connecting the pores. 
An illustration of the types of structures observed in this case is shown in 
figure 7.16. 

It is apparent in figure 7.16 that the invading fluid traps regions of the 
defending fluid. As the invader advances it is possible for it to completely 
surround regions of the defending fluid, i.e., completely disconnect finite 
clusters of the defending fluid from the exit sites of the sample. This is 
one origin of the phenomenon of 'residual oil,' a great economic problem 
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FIGURE 7.16: Invasion percolation of water (black) displacing air in a model 
consisting of a regular array of cylinders 2 mm in diameter and 0.7 mm 
high separating parallel plates. The water does not wet the model. The 
water enters at the upper left corner and exits at the lower right corner. 
The displacement is at Ca ~ 10-5 (Feder et al., 1986). 

in the oil industry. Since oil is incompressible, Wilkinson and Willemsen 
introduced the new rule that water cannot invade trapped regions of oil. 

The algorithms describing invasion percolation are now simple to de­
scribe: 

• Assign random numbers r in the range [0,1] to each site of an L x L 
lattice. 

• Select sites of injection for the invading fluid and sites of extraction 
for the defending fluid. 

• Identify the growth sites as the sites which belong to the defending 
fluid and are neighbors to the invading fluid. 

• Advance the invading fluid to the growth site that has the lowest 
random number r. 

• TRAPPING: Growth sites in regions completely surrounded by the 
invading fluid are not active and are eliminated from the list of growth 
sites. 

• End the invasion process when the invading fluid reaches an exit site. 
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FIGURE 7.17: An invasion percolation (without trapping) cluster grown 
from the central site on a 300 x 300 lattice until it reaches one of the edges 
of the lattice. The cluster contains 7656 sites. 

This model advances the invading fluid to new sites one by one, always 
selecting the possible growth site with the lowest random number associated 
with it. This is an algorithm that lets the invading cluster grow in a 
manner subject to local properties. The rule that a trapped region cannot 
be invaded introduces a nonlocal aspect into the model. The question 
whether or not a region is trapped cannot be answered locally, and involves 
a global search of the system. 

It is interesting to compare the invasion percolation process without 
trapping to the ordinary percolation process described in previous sections. 
In the ordinary percolation process one may grow percolation clusters as 
follows: The sites on an L x L lattice are assigned random numbers r in 
the range [0,1]' and one places a seed on the lattice. Then for a given 
choice of the occupation probability p, 0 < P < 1, the duster grows by 
occupying all available sites with random numbers r < p. The growth of 
the percolation cluster stops when no more such numbers are found on the 
boundary (perimeter) of the cluster. Of course, most of the sites chosen 
will generate clusters of a finite size similar to the one shown in figure 7.10. 
Only if the seed site happens to lie on the incipient percolating cluster at 
Pc, or on the percolating cluster for p > Pc, will the percolation cluster grow 
to a size that spans the lattice. By contrast, in invasion percolation the 
cluster grows by always selecting the smallest random number, no matter 
how large. However, once a large number ro has been chosen, it is not 
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FIGURE 7.18: Invasion percolation (without trapping) on a 100 x 200 
quadratic lattice. The invader (black) enters from sites on the left-hand 
edge and the defender escapes through the right-hand edge. At 
'break-through' the invader just reaches the right-hand edge. 

necessarily true that subsequently every number r > ro will be chosen -
smaller numbers will in general become available at the interface, and will 
thus be chosen. The cluster shown in figure 7.17 is grown by this process 
until it reaches the edge of the system. 

The invasion percolation cluster in figure 7.17 is quite similar to the 
percolation cluster shown in figure 7.10. Wilkinson and Willemsen (1983) 
simulated the invasion process on lattices of size L x 2L, injecting the 
invader on the left-hand edge and stopping the simulation at the break­
through point, when the invader reached the right-hand edge. We illustrate 
this geometry in figure 7.18. 

Naturally, in the finite geometry the invader will gradually fill the 
entire lattice if the invasion process is continued. Wilkinson and Willemsen 
found that the number of sites M (L ) in the central L x L portion of the 
lattice at breakthrough increases with the size of the lattice as follows: 

M(L) = A LDinv, with Dinv ~ 1.89 . (7.39) 

This equation is analogous to equation (7.5), and the fractal dimension of 
invasion percolation without trapping, Dinv, is found to equal the fractal 
dimension of the incipient percolation cluster at Pc. There is now consid­
erable evidence that invasion percolation in fact is in the same universality 
class as ordinary percolation (Dias and Wilkinson, 1986). 

Trapping changes the invasion percolation quite drastically in two di­
mensions. In figure 7.19 we show an invasion cluster grown by the process 
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FIGURE 7.19: Invasion percolation with trapping on a 100 x 200 quadratic 
lattice. The invader (black) enters from sites on the left-hand edge and 
the defender escapes through the right-hand edge. At 'break-through' the 
invader just reaches the right-hand edge. 

that includes trapping. Comparing the invasion percolation cluster in 
figure 7.18 to the invasion percolation cluster with trapping shown in fig­
ure 7.19 one sees that the trapping rule leads to clusters with much larger 
holes in them. This is reflected in how the number of sites, M(L), that 
belong to the central part of an Lx 2L lattice, with injection from one side, 
scales with the size of the lattice, 

M(L) = A LDtr .. p , with Dtrap ~ 1.82 . (7.40) 

This result was obtained by Wilkinson and Willemsen (1983). Lenormand 
and Zarcone (1985a) investigated experimentally the invasion of air at a 
very slow rate into a two-dimensional network of 250,000 ducts of ran­
dom widths on a square grid that was filled by glycerol (see figure 7.20). 
Note that they continued the experiment after breakthrough. By plac­
ing a semipermeable membrane at the right-hand edge of the sample cell 
they could prevent the invading air from escaping, and the invasion pro­
cess was terminated when all the remaining defending fluid was trapped. 
They found that the number of ducts filled by the invading fluid counted 
inside boxes of side L followed equation (7.40) with 1.80 < Dtrap < 1.83, 
consistent with the numerical simulations. 

We have experimentally generated invasion percolation clusters with 
the trapping rule by injecting air at the center of a two-dimensional circular 
model of a porous medium consisting of a layer of glass spheres placed at 
random and sandwiched between two plates. The resulting cluster, shown 
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FIGURE 7.20: Displacement of the wetting fluid (black) by the nonwet­
ting fluid (white) injected on the left-hand side of the network. On the 
right-hand side, a semipermeable membrane prevents the nonwetting fluid 
from flowing outside (Lenormand and Zarcone, 1985a). 

in figure 7.21, was found to have a fractal dimension of D = 1.84 ± 0.04, 
also consistent with the expected result. 

We conclude that the invasion percolation process with trapping gen­
erates fractal structures, which have a fractal dimension that is lower than 
the fractal dimension both of invasion percolation without trapping and 
of ordinary percolation. The experimental results for immiscible fluid dis­
placement in two-dimensional porous media at very low capillary numbers 
are consistent with the process of invasion percolation with trapping intro­
duced by Wilkinson and Willemsen (1983). 

However, in three dimensions the situation is altogether different. Con­
sider ordinary percolation in the simple cubic (s.c.) lattice where each lat­
tice site has six neighbors. The percolation threshold for this geometry 
is Pe(s.c.) ~ 0.3117, and the fractal dimension of the incipient percolation 
cluster at Pc is D ~ 2.5. The important point to note is that in this case 
there is a range Pc < P < (1 - Pc) of occupation probabilities for which 
both the occupied sites and the empty sites percolate and form spanning 
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FIGURE 7.21: Air (black) displacing glycerol (white) at very low capillary 
numbers Ca ~ 10-5 , in a two-dimensional model consisting of a layer of 
randomly packed glass spheres 1 mm in diameter. The fractal dimension 
of the cluster of invading of air is D ~ 1.84 (MaII2SY et al., 1987b). 

clusters. By contrast in two-dimensional percolation on the square lattice 
one finds that either the occupied sites or the empty sites percolate and 
there is no range for which both percolate. Interestingly, percolation on 
the triangular lattice is a borderline case since Pc = 0.5 is the simultaneous 
threshold both for the occupied sites and for the empty sites. 

The qualitative difference between two and three dimensions extends 
to invasion percolation. Wilkinson and Willemsen (1983) find D ~ 2.52 for 
the invading cluster at breakthrough, both with and without the trapping 
rule. The existence of a range of occupation probabilities for which both the 
defending fluid and the invading fluid percolate makes trapping much less 
effective. Most of the sites are still filled by the defending fluid when the 
invading fluid percolates the three-dimensional sample from one face to the 
other. When the invasion process is continued one finds that the defending 
fluid is trapped at p = (I-pc). Wilkinson and Willemsen found that at this 
point the number of sites in the invading cluster increased as L2, so that it 
in fact represented a finite fraction ~ 0.66 of the sites of the simple cubic 
lattice of size L x L x L. The invading cluster is therefore not fractal at the 
limit where the defending fluid is trapped. Dias and Wilkinson (1986) have 
discussed a related model, percolation with trapping, which includes the 
trapping rule but ignores the invasion part of the problem. They analyze 
the size distribution of the trapped regions and they give strong evidence 
for the conclusion that the critical behavior of invasion percolation with 
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trapping belongs to the same universality class as ordinary percolation in 
three dimensions. 

Experimentally it is difficult to realize the three-dimensional invasion 
percolation process. Clement et a!. (1985) injected nonwetting Woods 
metal into consolidated crushed glass very slowly from the bottom and 
analyzed both vertical and horizontal cuts of the cylindrical sample. They 
concluded that the horizontal cuts, perpendicular to the flow direction, 
show that the Woods metal had invaded the porous medium in a self­
similar manner, and the fractal dimension of the distribution of the metal 
in the cut was found to be == 1.65. This is somewhat above the fractal 
dimension, 1.50, expected for a cross-section of the incipient percolation 
cluster. However, gravity effects cannot be neglected and clearly influence 
the results and the fractal dimension of the horizontal cuts depends on the 
level at which they are taken. 

7.9 The Fractal Diffusion Front 

We noted in the introduction to this chapter that diffusion processes can 
spread indefinitely and the dynamics of diffusion lies in the randomness of 
the particle motion. By contrast in percolation processes the randomness 
is associated with the medium, and there exists a critical threshold below 
which percolation processes are limited to finite regions or clusters. In a 
notable paper Sapoval et al. (1985) showed that the diffusion front resulting 
in diffusion from a source has a fractal structure that is related to the 
so-called hull of percolation clusters. The descriptive term hull was first 
introduced by Mandelbrot (1982) and discussed in detail by Voss (1984). 

Consider the diffusion of particles from a line source on a quadratic 
lattice, shown in figure 7.22. The particles come from a source at the left­
hand edge of the illustration. Anyone of the particles attempts to jump to 
one of its four neighboring sites, a distance a away, every T seconds. The 
relation between random walks and diffusion in one dimension is discussed 
in some detail in chapter 9. The diffusion constant V is given by the 
Einstein relation (9.3) which in the notation used here is 

V = ..!..a2 • 
2r (7.41) 

The displacements of the diffusing particle in the x-direction, perpendic­
ular to the source, and in the y-direction, parallel to the line source, are 
statistically independent. The mean square displacement, during a time 
interval t, of a particle starting at Xo, Yo is given by equation (9.11) or for 
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FIGURE 7.22: Diffusion of 'particles' (filled circles) from a source at the 
left-hand edge of a lattice consisting of sites (empty squares). The particles 
(filled squares) that are both connected to the source and neighbors to 
sites connected to the right-hand edge constitute the hull of the diffusing 
particles. The right-hand figure is a blow-up of the region marked by a 
square in the left-hand figure. Here the hull is shown as filled circles, sites 
connected to the source as large circles and the remaining occupied sites as 
small circles. A color version of the left-hand part of this figure is included 
in the insert that follows the Contents. 

the two-dimensional case 

([x(t) - xo]2} = ([y(t) - YO]2 } = 2Vt (7.42) 

The diffusion distance £ is defined as the root mean square displacement of 
the diffusing particle from its starting point and is given by 

£2 = ([x(t) - xof} + ([y(t) - yof} = 4Vt = 2a2t/T . (7.43) 

It is well known that the probability of finding a particle at position x 
from the line source, at x = 0, in a lattice of width L and infinite in the 
x-direction is given by 

2 l Z
,
l 

p(x) = 1- Vi 0 du exp( _u2 ) • (7.44) 

This probability decreases gradually from 1 at the source and vanishes 
rapidly for x > i. 

The illustration in figure 7.22 shows that when the diffusion process is 
considered at a given instant in time one finds a lattice with sites occupied 
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by particles just as in the percolation process discussed in previous sections. 
However, in this case the probability of a site being occupied is dependent 
on the distance x from the source and is given by equation (7.44). Near 
the source one has p(x) ~ 1, which is above the percolation threshold of 
the quadratic lattice, and the sites occupied by particles percolate. Further 
away from the source the probability of having sites occupied by particles 
falls below Pc and these sites form only isolated clusters. 

In an electrical analog one considers particles on neighboring sites to 
be in electrical contact. As an example imagine gold atoms diffusing from 
a source on an insulating substrate. The border between the sites that are 
(electrically) connected to the source and the insulating nonoccupied sites 
is called the hull of that region. Some care has to be taken in the definition 
ofthe"hull. Two sites occupied by particles are connected to other occupied 
sites if they are neighbors in the x- or y-directions. We also consider the 
connectivity of the empty sites. However, one must (in order to obtain a 
well-defined border between the filled sites and the empty sites) consider 
an empty site to be connected if at least one of its eight neighboring sites 
are also empty. That is, in defining the connectivity of the empty sites 
we consider not only the neighboring sites in the x- and y- direction but 
also the four diagonally placed neighboring sites. The hull consists of all 
the sites that are connected to the source and are neighbors to empty 
sites" connected to the insulating far end of the sample. \¥e consider, in 
a pictorial language, the sites connected to the source to represent 'land" 
and the connected empty sites to represent the 'ocean.' One walks along 
the hull if one makes sure that there is salt water just next to one's position 
at all times. Note that this excludes the shores of the lakes of disconnected 
empty sites on land (they are not salty), and it also excludes the shores of 
islands off the 'hull' and in the ocean since they are not connected to the 
source. 

In figure 7.22 we show the result of a simulation on a 300 x 300 lattice, 
after a time of t = 9· 104r, and with a diffusion length of l :::: 300a (for a 
color version of this figure see the insert that follows the Contents). The po­
sition of the hull moves to increasing x as time, and therefore l = aJ2t/r, 
increases. Also the width of the region covered by the hull increases with 
time and l. To be more precise, let Ph (x )dx be the probability that a site 
in the range from z to x + dx belongs to the hull. Then the mean position 
of the hull, Xh, and the width O'h are given by 

Xh= fooo dx x Ph(X) , 
O'~= fooo dx (x - xh)2 Ph(X) . 

(7.45) 

Sapoval et al. made the important observation that the position of the 
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hull, Xh, is given by 

(7.46) 

This implies that by finding the probability P of having a site occupied a 
distance x h from the source one obtains a very accurate estimate of the 
percolation threshold. For the two-dimensional quadratic lattice Rosso et 
al. (1985) obtained the value Pc = 0.592802 ± 10-5 , and Ziff (1986) found 
by an analysis of percolation cluster hulls that Pc = 0.59275 ± 3 .10-5 • For 
the triangular lattice Sapoval et al. (1985) found Pc = 0.5011 ± 0.0003, 
consistent with the exact result Pc = 1/2. 

When the hull is analyzed over distances smaller than the width t7h of 
the hull Sapoval et al. found that the number of sites, M(R), that belong 
to the hull inside a radius R scales as 

(7.47) 

The hull is a fractal object. In fact they found Dh = 1.76 ± 0.02, by fitting 
the results of simulations. However, further analysis of these simulations 
(to be discussed below) led them to conjecture that Dh = 1.75, exactly. On 
length scales less than the width of the hull, it appears to be a self-similar 
fractal with a fractal dimension ~ 1.75. This result is consistent with the 
determination of the fractal dimension of the hulls of percolation clusters 
by Voss (1984). He estimated Dh = 1.74 ± 0.02 from clusters of varying 
size, and Dh = 1.76 ± 0.01 from the two-point correlation of the sites on 
the hull. Ziff (1986) concluded by studying hulls of percolation clusters 
that the fractal dimension of the hull is 1.751 ± 0.002, consistent with the 
conjecture by Sapoval et al. 

The self-similarity of the hull is shown very nicely in figure 7.23. It is 
clear, however, that the hull in the geometry used here is in fact a self-affine 
fractal. The distinction between self-similar and self-affine is discussed in 
chapter 10. The point is that if one considers the diffusion on a strip of 
width 2L instead of L, for a given time t, then one finds that the number 
of sites that belong to the hull also doubles. From this point of view the 
diffusion front is a one-dimensional object. Sapoval et al. therefore studied 
the scaling properties of the number of sites in the hull, Afh(L,f), and of 
the width of the hull, t7(L, f), by fitting the results of simulations using the 
relations 

Mh (L, f) = A L fOt ,with A = 0.96 and a = 0.425±0.005 , 

t7h(L,f) = Bfa, with B = 0.46 and & = 0.57 ±0.01 . 
(7.48) 

The results of the simulations and the fits of equation (7.48) are shown in 
figure 7.24. 
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FIGURE 7.23: Self-similarity of the diffusion front. The hull is shown as a 
series of magnifications of a central part. The magnification is a factor of 
two each time. The self-similarity is apparent in the fact that it calls for a 
rather close inspection of the four figures if one wants to order the figures 
according to magnification (Sapoval et al., 1986). 

Sapoval et al. gave the following interesting argument relating the 
exponent & to the exponent v for the correlation length: When x does not 
equal position Xh of the front, then the concentration of sites occupied by 
particles deviates from Pc. There are lakes and islands in these regions. The 
characteristic size of these objects is the correlation length e, which depends 
on position in this case, and is given by a modified form of equation (7.23): 

(7.49) 

If the distance to Xh of a cluster (lake or island) of characteristic size e(x) 
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FIGURE 7.24: Variation of the number of points in the hull, Mh, and of the 
width G'h, as functions of the diffUsion length i (Sapoval et al., 1985). 

is equal to e this cluster has a finite probability of touching the frontier 
and thus of being within the frontier. In other words 

(7.50) 

Here K is a constant of order unity. Here equation (7.49) may be used, and 
with a Taylor expansion of p(x) given by equation (7.44), one finds that 

(7.51) 

From equation (7.44), one finds that (op/ox):T:=:T:1t. <X 1/1, and obtains 

(7.52) 

It follows that 
(7.53) 

The result is that the exponent it that controls how the width of the hull 
increases with the diffusion length i is given in terms of the exponent v 
that controls the divergence of the correlation length by 

~ v a---- 1+v· (7.54) 

If we use the exact value v = 4/3 we predict it = 4/7 = 0.5714, while the 
simulations gave it = 0.57 ± 0.0l. 

We have already noted that the hull is a self-similar fractal up to length 
scales equal to the width of the hull. Therefore we expect the number of 
sites that belong to the hull in a box of size G'h x G'h to be given by 

Mh (L, i)? I"V uflt. = la [rf; . (7.55) 
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Here the last relation follows from equations (7.48) and (7.54), and one is 
led to the conclusion 

11 
a = --(Dh - 1) = 3/7 = 0.429 . .. , 

1+11 
(7.56) 

where we have used Dh = 7/4 and 11 = 4/3. The observed value a = 
0.425 ± 0.005 agrees very well with the prediction. 

Sapoval et al. (1985) noted that the ratio Mh(L/f)Uh/ Lf approaches 
a constant value of ~ 0.441 as f -+ 00. This result together with the scaling 
result in equation (7.55), led them to conjecture that the fractal dimension 
of the hull can be written 

D - 1 + 11 - 7/ - 1 75 h - -- - /4 -. • 
11 

(7.57) 

This result is consistent with the results of large-scale simulations by Ziff 
(1986). Very recently Saleur and Duplantier (1987) proved this conjecture 
to be correct! 

In many cases one is interested not in the hull of a cluster but in the 
external perimeter (Grossman and Aharony, 1986). The external perime­
ter includes the sites available to a finite-size particle (coming from the 
outside) that is touching the occupied sites on the cluster. This is what 
is required if we consider the adsorption of finite-size particles on a frac­
tal surface. The external perimeter differs from the hull in that many 
fjords cannot be reached by the test particle. Grossman and Aharony 
(1986) have shown that the fractal dimension of the external perimeter 
is De = 1.37 ± 0.03. Heuristic arguments show that De = 4/3, exactly 
(Aharony, 1986; Saleur and Duplantier, 1987; Grossman and Aharony, 
1987). Grossman and Aharony (1987) extended the definition of the ex­
ternal perimeter to the accessible perimeter, defined as all the perimeter 
sites that are connected to infinity by a channel (of empty sites) which has 
a minimal width larger than r (the diameter of the test particle). They 
found by numeric simulations that the fractal dimension of the accessible 
perimeter is also De = 4/a independent of r when the test-particle diameter 
is larger than some lattice-dependent threshold. 

Shaw (1987) studied the displacement front formed by the evaporation 
of water from a quasi two-dimensional porous medium. He found that 
the front is stable and locally has a structure characteristic of invasion 
percolation (see figure 7.25a), and he determined a fractal dimension D = 
1.89 ± 0.03 for the front. In a lower magnification (see figure 7.25b) the 
front is quite similar in structure to the hull shown in figure 7.22. An 
analysis of the leading edge, i.e., the perimeter of the front, shows that the 
perimeter has a fractal dimension D = 1.38± 0.02, which is consistent with 
the expected value for De. 
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FIGURE 7.25: The drying front in a thin layer of silica spheres. Drained 
porosity appears dark in the transmitted light image. (a) Portion of the 
drying front. (b) In the lower-magnification image it is evident that the 
front is stable (Shaw, 1987). 

The discovery by Sap oval , Rosso and Gouyet that the diffusion front 
has a fractal structure is notable. Diffusion has been studied for a long 
time and is completely 'understood' in terms of the diffusion equation, 
which leads to time-dependent diffusion fronts such as that described by 
equation (7.44). Nevertheless the diffusion front has an internal structure 
that is fractal. It should also be remembered that the fractal structure 
extends over distances comparable to the diffusion width l = J 41Jt, which 
diverges with time, and the fractal structure may very well extend over 
macroscopic distances even in the case where the diffusion is on the atomic 
scale. 

Rosso et al. (1986) have extended this discussion to three-dimensional 
diffusion on the simple cubic lattice. We have already, in the context of in­
vasion percolation, studied the fact that the connectivity properties in two­
and three-dimensional systems are qualitatively different (see figure 7.26). 
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FIGURE 7.26: Picture of a 19 x 19 x 19-site system. The particles are 
shown as cubes, and the probability of having a site occupied decreases 
from 1 at the bottom of the sample to 0 at the top. Only sites occupied by 
particles connected to the bottom are shown. (a) The top figure shows the 
bottom six layers in the high-density part of the sample. (b) The top layer 
in the middle figure is at a concentration corresponding to the percolation 
threshold of the quadratic lattice. (c) The bottom figure shows all the sites 
connected to the bottom plane. The arrows indicate the planes where the 
occupation probability is given by 1- PeB and by PeA (Rosso et al., 1986). 

The diffusing particles are considered to be connected if they are nearest 
neighbors, i.e., they are neighbors in the x-, y- or z-directions. The perco­
lation threshold for site percolation with this connectivity is PeA ~ 0.3117. 
An empty (insulating) site is considered to be connected to another empty 
site if it is on one of the 26 neighboring sites in a cube of side 3a, centered 
on it. The percolation threshold for the empty sites with this connectivity 
is PeB ~ 0.097. In figure 7.26 one clearly sees that it is possible to have 
percolation of both the particles and the holes simultaneously in a range 
of occupation probabilities PeA < P < (1- PeB). 

The hull of the occupied sites connected to the bottom plane includes 
the sites that are on the cluster connected to the bottom plane and have as 
a nearest neighbor an empty site connected to the top plane. Interestingly, 
for P in the range of simultaneous percolation, one finds that almost all the 
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occupied sites belong to the hull. The surface of the diffusion front, which 
is the hull, is in fact a finite fraction of the sites, and therefore an object 
of fractal dimension 3. From this point of view it behaves as an ordinary 
solid. However, any point of that solid can be reached from the outside, 
i.e., it belongs to the surface. In that sense, this system is an ideally porous 
material. 



Chapter 8 

Fractal Records in Time 

Many observations of nature consist of records in time or a series of observa­
tions. For example, extensive records exist for temperature. These records 
clearly exhibit yearly variations. Long records of temperature show erratic 
behavior on both a short- and a long-term time scale. The records in time 
of such phenomena as temperature, the discharge of rivers, rainfall and 
thickness of tree rings can be analyzed in terms of Hurst's rescaled range 
analysis. The records are characterized by an exponent H - the Hurst 
exponent. The trace of the record is a curve with a fractal dimension 
D = 2 - H, under conditions we will discuss in more detail in chapter 10. 

In this chapter we present and discuss Hurst's analysis of records in 
time. The related problem of fractal Brownian motion is discussed in. the 
next chapter. We use the rescaled range analysis in a discussion of ocean 
wave-height statistics, after a discussion of the relation between self-similar 
and self-affine curves. 

8.1 Hurst's Empirical Law 
and Rescaled Range Analysis 

Hurst spent a lifetime studying the Nile and the problems related to wa­
ter storage. He invented a new statistical method - the rescaled range 
analysis (R/ S analysis) - which he described in detail in an interesting 
book, Long- Term Storage: An Experimental Study (Hurst et al., 1965). As 
an introduction to this method let us consider Lake Albert, an example 
discussed by Hurst. In figure B.1, we have plotted the measured annual 
discharge as a function of time. 

The problem is to determine the design of an ideal reservoir based upon 
the given record of observed discharges from the lake. An ideal reservoir 
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FIGURE 8.1: Lake Albert annual discharge e(t) (broken line), and accu­
mulated departures from the mean discharge X(t) (full line). The range is 
indicated by R (after Hurst et aI., 1965). 

never overflows or empties. In any given year, t, such a reservoir will accept 
the influx e(t) from the lake, and a regulated volume per year (discharge), 
(e )T, will be released from the reservoir. What storage would have been 
required for the reservoir to release a volume each year equal to the mean 
influx for the period under discussion? The average influx over the period 
of T years is 

(8.1) 

This average should equal the volume released per year from the reservoir. 
Let X(t) be the accumulated departure of the influx e(t) from the mean 
(e )r 

t 

X(t,1") = 2: {e(u) - (e)T} . (8.2) 
u=1 

The resulting curve for Lake Albert is shown in figure 8.1. The differ­
ence between the maximum and the minimum accumulated influx X is the 
range R. The range is the storage capacity required to maintain the mean 
discharge throughout the period. For a sufficiently large reservoir that 
never overflows and never empties, R represents the difference between the 
maximum and minimum amounts of water contained in the reservoir. The 
explicit expression for R is 

R( 1") = max X(t, 1") - min X(t,1") , 
19sT 19sT 

(8.3) 
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FIGURE 8.2: Sketch of a reservoir with an influx of e(t), and an average 
discharge <e)7' The accumulated difference between influx and regulated 
outflow is X(t). The range, R, is the difference between the maximum and 
minimum contents of the reservoir. 
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FIGURE 8.3: Lake Albert accumulated departures from the mean discharge 
X(t) for the first 30 years. The range is indicated by R (after Hurst et al., 
1965). 

where t is a discrete integer-valued time and T is the time-span considered. 
These quantities are illustrated in figure 8.2. 

Clearly, the range depends on the time period T considered and we 
expect the range R to increase with increasing T. For the Lake Albert data 
in figure 8.1 for the period 1904 to 1957 one finds R(53) = 91 . 109 rn3 , 
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FIGURE 8.4: Rescaled range analysis for various natural phenomena. The 
lag is r = N, the number of years (Hurst et aI., 1965). 

whereas for the first 30 years, illustrated in figure 8.3, one finds a range of 
only R(30) = 73 . 109 m3 • 

Hurst investigated many natural phenomena, such as river discharges, 
mud sediments and tree rings. Hurst used the dimensionless ratio RIS, 
where S is the standard deviation, i.e., the square root of the variance. 
The use of this dimensionless ratio permits the comparison of observed 
ranges of various phenomena. The standard deviation is estimated from 
the observations by 

(8.4) 

Hurst found that the observed rescaled range, RIS, for many records 
in time is very well described by the following empirical relation: 

RIS = (rI2)H . (8.5) 
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Properties of K from Natural Phenomena 

Range Num r . 
Phenomenon ofN Pheno- Sets Mean Std. auto-correl-

Years mena devn. Range ation 

be K Coeff of 

River discharges 10-100 39 94 0·72 0·091 0·5O-Q·94 
Roda Gauge 80-1,080 1 66 0·77 0'055 0'58~'86 0·025 ±0'26 
River and lake levels 44-176 4 13 0·71 0·082 0'59~'85 n=15 

Rainfall 24-211 39 173 0·70 00088 0'4~'91 O.O~ ±~508· 

Varves 
0'064 0·5~·87 -0'07±0'11 Lake Saki 50-2,000 1 114 0·69 

Moen and n=39 
Tamiskaming 50-1,200 2 90 0·77 0-094 0·50-0·95 

Corintos and 
Haileybury 50-650 2 54 0·77 0'098 0·51~·91 , 

Temperatures 29-60 I 18 120 0·68 0·087 0·46-0·92 
Pressures 29-96 8 28 0·63 0·0700·51-0·76 
Sunspot numbers 38-190 1 15 0·75 0·056 0·65-0·85 
Tree-rings and spruce 

index 50-900 5 105 0·79 0·076 0·56-0·94 

Totals and means of 
sections 

Water statistics 83 346 0·72 0·08 0·46-0·94 
Varves 5 258 0·74 0'09 0·5O-Q·95 
Meteorology and trees 32 268 0·72 0·08 0·46-0·94 

Grand totals and 
means 10-2,000 120 872 0'726 0.082 0·46-0·95 

• Includes also river discharges. 

TABLE 8.1: Table of H(= K) for various natural phenomena (Hurst et aI., 
1965). 

The Hurst exponent H (called K by Hurst l ), is more or less symmetrically 
distributed about a mean of 0.73, with a standard deviation of about 0.09. 

A figure from Hurst's book illustrates the quality of the fit of the Hurst 
empirical law equation (8.5) to observations - see figure 8.4. Statistical 
results collected by Hurst are found in table 8.1, which clearly shows that 
for many natural phenomena we have H > 1/2. Hurst's observation 
is remarkable considering the fact that in the absence of long-run statisti­
cal dependence R/ S should become asymptotically proportional to T~ for 
records generated by statistically independent processes with finite vari-

1 Mandelbrot used H for the Hurst exponent. This is a fortunate choice since H is 
often directly related to the Lipschitz..Holder exponent. 
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FIGURE 8.5: (a) A sequence of independent random numbers e(t) generated 
by 'flipping' 10 'coins' 2500 times. (b) The accumulated deviation from the 
mean (zero) X(t) = E~=l e(u). 

ances and is given by 

R/S = (11'1"/2)1 independent random process with finite variances, 
(8.6) 

as shown by Hurst (1951) and Feller (1951). 

8.2 Simulations of Random Records 

Hurst - apparently a practical (and skeptical) man - tested equation (8.6) 
by 'Monte Carlo' simulation for a process of independent random variables 
obtained by tossing n coins a total of 1" times and taking the random 
variable to be e = (number of heads) - (number of tails). The probability 
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FIGURE 8.6: RI S as a function oflag T (filled circles), for a random variable 
e(t) given as the difference between the ~umber of (heads.' and (tails' ~n 
tosses of 10 coins repeated T = 50,000 tImes. The GaussIan asymptotIc 
behavior RI S = J 7rT 12, is shown as the broken line. The line represents 
a fit of RIS = (aT)H to the observed RIS. The parameters of the fit are 
a = 1.3 ± 0.1 and H = 0.503 ± 0.008. 

of obtaining k heads by throwing n coins is (!)n(n!jk!(n - k)!). If the 
set is tossed T times then k, and therefore e, are given by the binomial 
distribution, which approaches the normal or Gaussian distribution for 
large T and n. It is straightforward (Hurst, 1951) to show that for this 
process one finds 

R=J;nr-1 
Since the standard deviation of the number of heads minus the number of 
tails is twice the standard deviation of k, and is given by S = Vii, we find 
that equation (8.6) follows in the limit of large T. 

Hurst made experiments by tossing 10 coins 1000 times - it took him 
about 35 minutes to toss 10 coins 100 times! We have simulated this process 
on a computer using a (pseudo-)random number generator to select -1 and 
1 with equal probability. We consider the heads to be represented by the 
l's. From n = 10 selections we evaluate e(t) as the sum of the numbers 
generated. The process is repeated 2500 times - this takes less than a 
second. The resulting sequence of random independent variables e(t) is 
plotted in figure 8.5. The sequence e(t) looks like noise. We have drawn 
lines between the points at (t,e(t)) and (t -1, e(t -1)), for t = 1, ., . ,2499, 
in order to give a readable representation of the data. The accumulated 
departure from the mean X(t) is also shown in figure 8.5. We have again 
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connected discrete points, (t, X(t)), by lines that represent the record of 
the set of points that have been visited. We note that the record X(t) is 
the position at time t of a particle that walks at random with steps of unit 
length on a line. This random process is a simplified version of the random 
walk with a Gaussian distribution of the step length discussed in the next 
chapter. It may be shown that, on time-scales much larger than the time 
between steps and on distances much larger than the unit step length, the 
present random walk with unit steps becomes asymptotically an ordinary 
Brownian motion. 

We have calculated RIS for data of the type shown in figure 8.5 start­
ing with a sequence of T = T = 50,000 'flips' of 10 'coins.' The time-span, 
T, over which the record in time is analyzed is called the lag. We reduce 
the lag T by a factor of 2 and obtain two independent values of RI S, from 
the record in time, one for each half of the data. We proceed to reduce T by 
another factor of 2, until we have T < 8, doubling the number of indepen­
dent domains in each step. For T = 1 it follows from the definitions (8.3) 
and (8.4) that RI S = 1. 

The results corresponding to the same value of the lag T are averaged 
and are plotted in a double logarithmic plot of RIS as a function of lag T 

in figure 8.6. 

The asymptotic RI S expected for independent random variables given 
by equation (8.6) is shown as the dashed line in figure 8.6. We find that the 
simulated results are well described by the asymptotic form for T > 20, and 
fall significantly below for T < 20. A least-squares fit of the observed RI S 
with the form (aT)H in the range T > 20 gives the estimates a = 1.3 ± 0.1 
and H = 0.503±0.008, consistent with the asymptotic form (1.57T)~. The 
errors are the standard deviations estimated from the covariance matrix 
obtained in the fit. The error given thus describes how well the line fits the 
datapoints. Normally, one finds that the variations between H estimated 
in different runs is somewhat larger than the quoted errors. For example, 
if we include all points T > 4 in the fit, then we find a = 1.04 ± 0.08, 
and H = 0.516 ± 0.006, which overestimates H and underestimates a. As 
already pointed out by Mandelbrot and Wallis (1969a), Hurst, in using the 
empirical Hurst law RIB = (TI2)H, tends to overestimate H for H < 0.72 
and underestimate H for H > 0.72. It is fair to point out that Hurst 
was fully aware of this and uses his simple form only because there is not 
enough data to warrant a more complicated fit of the type we have done­
he states in connection with his coin toss experiments: 'Bhort records with 
low values of K are therefore not distinguishable from random records. ' 
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FIGURE 8.7: (a) A sequence of biased random numbers e(t) generated 
by drawing 'cards' from a biased 'hand' generated by the Hurst process, 
repeated 2500 times. (b) The accumulated deviation from the (zero) mean 
X(t) = E~=l e(u). 

8.3 Simulations of Long-Term Dependence 

In trying to account for the RIS statistics with H '" 0.72, Hurst made 
simulations using a 'probability pack of cards.' In this pack cards are 
numbered -1, +1, -3, +3, -5, +5, -7, +7, and the numbers of each kind 
are proportional to the ordinates of a normal frequency curve. There are 
52 cards in all: thirteen l's, eight 3's and four and one respectively of 
the others. The approximation of these numbers to the Gaussian normal 
frequency curve is fairly close. The cards are first well shuffled and then 
cut, and the number on the exposed card recorded. The cards are reshuffled 
slightly and cut again, and so on. The numbers recorded may be taken as 
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FIGURE 8.8: RIS as a function of the lag T (filled circles) for a random 
variable e(t) generated by cutting cards from a biased hand by the Hurst 
procedure, repeated T = 100,000 times. The Gaussian asymptotic behav-
ior RIS = V7rT/2 is shown as the broken line. The fit (full line) of the 
form RI S = (aT)H to the observed values of RI S shown was obtained with 
the parameter values a = 0.8 ± 0.2, and H = 0.65 ± 0.02. 

corresponding to observations of a quantity whose frequency distribution 
conforms to the normal Gaussian curve. 

This process is quicker than tossing coins - Hurst produced 100 ran­
dom numbers in 20 minutes this way. Simulating this process we find results 
very similar to those shown in figures 8.5 and 8.6, as is to be expected. 

Hurst then made an interesting extension of his simulations producing 
biased random records: 

The pack is shufJled and a card is cut, and after its number 
has been noted it is replaced in the pack. Two hands are then 
dealt and if for example the card cut was +9, then the three 
highest positive cards in one hand are transferred to the other, 
and from this the three highest negative cards are removed. This 
hand then has a definite bias. A joker is now placed in it. 

Hurst then uses this biased probability hand of cards to generate a random 
sequence as before. If the joker is cut, all the cards are reshuffled and a 
new biased hand dealt. 

Hurst made six such experiments, each consisting of 1000 cuts, and 
determined an exponent H = 0.714 ± 0.091, which is consistent with his 
observations on the long-term statistics of natural phenomena! 
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FIGURE 8.9: The apparent Hurst exponent H as a function of the minimum 
lag Tmin used in fitting a trend line to the RIS versus T data in figure 8.9, for 
a sequence of 100,000 dependent variables generated by the biased Hurst 
process. 

We have simulated a Hurst biased random walk, and the resulting 
record of the random variable e-(t) in figure 8.7a is quite different from the 
corresponding record for the independent random sequence in figure 8.5a. 
The accumulated deviation from the mean X(t) = 2:~=1 e-(t) shown in 
figure 8.7b shows large excursions with less 'noise.' Thus, for small values 
of the lag T, the range R divided by the sample average S is smaller than 
the value found for the independent process in figure 8.5b. However, for T 

above 100 the RI S is substantially above the independent values. Fitting 
the observed set of RIB in the range 20 < T < 2500, we find a = 0.62±0.07 
and an exponent H = 0.7l±0.01, consistent with Hurst's simulations using 
a probability pack of cards. 

It is clear that the biased Hurst process generates trends that remain 
for, on the average, T = n cuts of a hand containing n cards. For the 
present case one must on the average cut the hand 27 times before the joker 
appears. Thus if the hand has a positive bias the trend will be increasing, 
whereas a negatively biased hand will give a decreasing trend. In the long 
run we expect the random sequence produced in this way to behave as 
an independent random process - with the asymptotic behavior given by 
equation (8.6) as before. 

In figure 8.8 the RIS analysis of a biased Hurst process with 100,000 
cuts of the probability pack described above is given. The trend line ob­
tained from fitting the data for T> 20 gives a = 0.8 ± 0.2 and an apparent 
Hurst exponent of H = 0.65 ± 0.02. Clearly the trend line does not fit the 
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FIGURE 8.10: R/ S diagram for the thickness of the varves in Timiskaming, 
Canada, as a function of the lag 'T in years (Mandelbrot and Wallis, 1969a). 

results of the simulation too well. In fact if we evaluate the apparent Hurst 
exponent by fitting the results in the range 'Tmin < 'T < 4096 we find that 
the estimated H drops markedly when 'Tmin ,.... 27 - the average residence 
time of the joker in the biased hand (see figure 8.9). 

The approach to the Gaussian asymptote is very slow. In fact the 
apparent H approaches H ~ 0.5 as 'Tmin increases, but the estimated values 
for H become rather uncertain since several decades of data are necessary 
for accurate fits. We conclude that the asymptote will not be reached 
in simulations unless the lag is extended to very large samples. We find 
it, with this background, very difficult to assess the significance of Hurst 
exponents H :/; 1/2 estimated from a limited set of observations. 

One of the longest records analyses using the rescaled range method 
has been done by Mandelbrot and Wallis (1969a), in studying the fos­
sil weather record in the form of thicknesses of mud layers in varves in 
Timiskaming, Canada. The data stretch over a period of 1809 years, have 
a very high apparent Hurst exponent H = 0.96 and show no evidence of 
breaking away from this trend line (see figure 8.10). 
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FIGURE 8.11: Porosity as a function of depth (feet) measured using a well 
log (left figure). RIS as a function oflag for the porosity data (right figure). 
The trend line is a fit with H = 0.855. The broken line is the slope for a 
statistically independent process (Hewett, 1986). 

Why should natural phenomena show the Hurst statistics? This clearly 
is an open question. However, the biased Hurst walk with a joker in the 
pack of probability cards gives a clue. The discharge of a river depends 
not only on the recent precipitation but also on earlier rainfalls. The flow 
in a large river system such as the Nile, or the discharge of Lake Albert, 
must depend on the water content in a large drainage area. The amount 
of water stored in the drainage area will increase in prolonged periods of 
higher than average precipitation. The excess amount of water stored will 
then contribute to the discharge in drier years. If for a prolonged period 
of time there is less than normal rainfall the general level of water in the 
drainage basin falls, and in subsequent periods of high precipitation some 
of the water is absorbed by the drainage area and the discharge remains less 
than normal. These 'memory' effects are modeled by the joker in Hurst's 
pack of cards. For river discharges the fractal nature of the drainage area, 
as discussed in section 12.2, may also contribute to the fractal behavior of 
river discharges. The fractional Brownian motion model (Mandelbrot and 
van Ness, 1968) discussed in the next chapter in effect takes memory effects 
into account. 

Vie have shown that an extraordinarily long series of observations must 
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be used in order to obtain the Gaussian statistics for systems with even 
a moderate memory effect. Therefore it is not clear to what extent Hurst 
exponents H > ! obtained from observations by the R/ S method imply 
persistence - and again more research is needed. 

As an example of a recent R/ S analysis consider the results reproduced 
in figure 8.11. The porosity as a function of depth was logged in a well 
(Hewett, 1986). The figure shows that the porosity fluctuates strongly. The 
R/S analysis shown in the right-hand part of figure 8.11 clearly indicates 
a persistent behavior with a Hurst exponent of H = 0.855. Hewett also 
analyzed the variance of increments and found the same value of H. 



Chapter 9 

Random Walks and Fractals 

Randomness is inherent in all natural phenomena. Even the most per­
fect crystal has many impurities and other defects placed at random. In 
fact, even if the crystal was perfect with each atom in its proper place, it 
would be there only on the average since the atoms are in constant ther­
mal motion. Therefore the actual state of even the most perfect system 
has elements of randomness. There is good evidence that many natural 
phenomena are best described as fractals. However, if fractals are to be 
useful in the description of nature we must develop the concepts of random 
fractals. 

Because of the extraordinary importance of Brownian motion, or the 
random walk process, in physics, chemistry and biology we will start with 
a discussion of this process as an example of random processes with frac­
tal properties. The simplest version is the one-dimensional random walk, 
which then may be extended to higher dimensions. We also consider the 
generalization to fractional Brownian motion first introduced by Mandel­
brot. Hurst's rescaled range analysis indicates that the statistics of many 
natural phenomena are indeed best represented as fractional Brownian 
motion. 

9.1 Brownian Motion 

Robert Brown (1828) was the first to realize that the erratic motion of mi­
croscopic pollen was physical, not biological in nature as was believed be­
fore his time. Everything is subject to thermal fluctuations and molecules, 
macromolecules, viruses, particles and other components of the natural 
world are all in eternal motion with random collisions due to thermal en­
ergy. A particle at absolute temperature T has, on the average, a kinetic 
energy of ~kT, where k is Boltzmann's constant. Einstein showed that 

163 
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this is true independent of the particle size (Einstein, 1905). Much of our 
understanding of thermal equilibrium and how it is reached is based on the 
enormous amount of research that has centered on the concept of' Brown ia n 
motion.' The motion of a 'Brownian particle' as seen under the microscope 
consists apparently of steps in a random direction and with a step-length 
that has some characteristic value, and therefore random walk is a term 
often used in the context of Brownian motion. 

We emphasize that in Brownian motion it is not the position of the 
particle at one time that is independent of the position of the particle at 
another; it is the displacement of that particle in one time interval that 
is independent of the displacement of the particle during another time 
interval. 

Increasing the resolution of the microscope and the time resolution 
only produces a similar random walk. As we shall see Brownian motion is 
self-similar. If the time axis is included as an extra dimension, the particle 
position as a function of time - also called the record of the motion -
is not self-similar but self-affine. The distinction between self-similar and 
self-affine will be important in the following discussions. 

Diffusion is best understood in terms of Brownian motion. Some of 
the interesting and often surprising effects of Brownian motion in biology 
are very nicely described in a small book by Berg (1983). 

9.2 Random Walk in One Dimension 

Consider a situation in which a 'particle' moves on a line - the x-axis -
by jumping a step-length of either +e or -e every T seconds. In modeling 
diffusion we consider e to be some microscopic length, say the particle 
diameter, and T is a microscopic time - the collision time. 

Rather than considering a fixed length e let the step-length be given 
by a Gaussian or normal probability distribution: 

(9.1) 

We may envisage the random walk process on the atomistic scale as follows: 
At intervals T a step-length e is chosen at random so that the probability 
of finding e in the range from e to e + de is pee, T)cte. A sequence of such 
steps {ei} is a set of independent Gaussian random variables. The variance 
of the process is 

(9.2) 



SEC. 9.2 • RANDOM WALK IN ONE DIMENSION 165 

4 

2 

<.v 0 

-2 

a -4 
40 

20 

0 

>< 
-20 

-40 

b -60 
0 SOD 1000 1500 2000 2S00 

t 

FIGURE 9.1: A sequence of independent Gaussian random variables with 
zero mean and unit variance. (a) The independent random steps of the 
'particle.' (b) The position of the particle. The time is in units of the 
'atomistic' time T between steps. 

The parameter V is the diffusion coefficient. It follows from equation (9.2) 
that the diffusion coefficient is given by the Einstein relation: 

(9.3) 

where <e) is the mean square jump distance. The equation (9.3) is valid 
under rather general conditions even for the case in which the jumps do 
not occur at regular intervals and when the probability distribution for the 
step-length e is discrete, is continuous or has some rather arbitrary shape. 

We obtain a nonnalized Gaussian random process by the replacement 
e +- elv2Vr so that the new e has zero average and the variance is 
<e2 } = 1. In figure 9.1a we show a sequence of nonnalized Gaussian random 
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FIGURE 9.2: The increment e in the position of a Brownian particle at time 
step 2r is the sum of two independent increments e' and e". 

variables. The sequence 6,6, ... is the sequence of steps of the random 
walk, whereas the position of the particle on the x-axis is given by 

n 

X(t = nr) = L:ei . (9.4) 
i=l 

The curve in figure 9.1b shows the position of the particle as a function 
of time. Note, however, that the curve is really a discrete set of points - we 
just did not bother to lift the pen between points. In the limit of arbitrarily 
small time steps the random variables become a random function X(t). The 
graph of the random function will look similar to figure 9.1b and is called 
the record of the random function X(t). Mandelbrot calls this record a 
Brown function and denotes it by B(t). 

9.3 Scaling Properties of One-Dimensional 
Random Walks 

In practice we do not observe Brownian motion with infinite resolution and 
we must consider the case in which we observe the particle position only 
at intervals br, where b is some arbitrary number. Start by considering the 
particle position only every second time step, i.e., b = 2, as indicated in 
figure 9.2. The increment e in the particle position is now the sum of two 
independent increments e' and e"· The joint probability p(e'je", r)cLe'de" 
that the first increment e' is in the interval [e', e' + de') and that the second 
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increment ell is in the interval [ell, ell + de") is given in terms of p( e, r) in 
equation (9.1) by 

p(e';e",r) = p(e',r)p(e",r) . 

The joint probability distribution is the product of the two probability den­
sities for each of the variables because the two increments are statistically 
independent. The two increments must add up to the total increment e, 
and by integrating over all possible combinations of e' and e" we find that 
the probability density for the increment e is given by 

100 1 (e) p(e,2r) = -00 de' pee - e', r)p(e', r) = V41rV2r exp - 4V2r . (9.5) 

Thus we see that when viewed with only half the time resolution the in­
crements of the particle position are still a Gaussian random process with 
(e) = 0. However, the variance has increased: (e) = 4Vr. The argument 
is easily extended to time intervals br between observations, with the result 

1 (e ) p(e,bT) = V41rVbT exp - 4VbT . (9.6) 

We therefore conclude that whatever the number b of microscopic time steps 
between observations, we always find that the increments in the particle 
position constitute an independent Gaussian random process with (e) = ° 
and a variance of 

with t = bT . (9.7) 

In figure 9.3 we show the particle position as observed every fourth 
microscopic time step for a process of 10,000 independent increments of 
zero mean and unit variance, i.e., the same process shown in figure 9.1. 
Here each of the increments is the sum of 4 independent steps, and we 
see that there is little to distinguish figure 9.1a from figure 9.3a - except 
for the scale of the increments, which now is approximately a factor of 2 
larger. Similarly, the particle position record in figure 9.3b is statistically 
the same as that in figure 9.1b - again apart from the scale used for the 
x-axis. However, in any given finite realization the two records will be quite 
different in local detail and the vertical scale will not be changed by the 
expected factor of Vb. 

The result that the Brownian record looks 'the same' under a change of 
resolution is called a scale invariance or symmetry of the Brownian record. 
This scaling property of Brownian motion may be expressed in an explicit 
way by transforming equation (9.1) by the replacements, t = bl/2~ and 
f = bT, in equation (9.1), i.e., we change the time scale by a factor b, and we 
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FIGURE 9.3: A sequence of independent Gaussian random variables with 
zero mean and unit variance - 'observed' at every fourth time step, i.e., at 
intervals of length 4T. (a) The independent random steps of the 'particle.' 
(b) The position of the particle. The time is in units of the 'atomistic' time 
T between steps. 

change the length scale by a factor b1/ 2 • The result of this transformation 
in equation (9.1) is a scaling relation for the probability density: 

(9.8) 

Here the prefactor b-1/ 2 ensures that the probability density is properly 
normalized: 

The equation (9.8) shows that the Brownian random process is invariant 
in distribution under a transformation that changes the time scale by band 
the length scale by b1/ 2 because it satisfies equation (9.8). As we discuss 
later a transformation that scales time and distance by different factors is 
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called affine, and curves that reproduce themselves in some sense under an 
affine transformation are called self-affine. 

The probability distribution for the particle position X(t) is also found 
by the methods used above and we obtain the result 

1 ( [X(t) - X(to)F) 
P(X(t) - X(to)) = .j41l'1>lt _ tol exp - 41>lt _ tol ' (9.9) 

which satisfies the scaling relation 

P(b1/ 2[X(bt) - X(bto)]) = b- 1/ 2 P(X(t) - X(to)) . (9.10) 

With this probability distribution for the particle position, it follows 
that the average and the variance of the particle position X(t) are given 
by 

(X(t) - X(to)) 
([X(t) - X(tO)]2) 

J:'" ~X p(aX,t - to) d~X = 0, 
- J~oo ~X2 P(~X, t - to) d~X , 

21>lt - tol , 

(9.11) 

where X(to) is the particle position at some reference time to, and ~X is 
the increment in the particle position: ~X = X(t) - X(to) 

The position X(t) of a Brownian particle is a random function of time 
t. Wiener (1923) introduced the random function for Brownian motion as 
follows. Consider a normalized independent Gaussian random process {e}. 
Let the increments in the position of the Brownian particle be given by 

X(t) - X(to) - elt - tolH (t > to) , (9.12) 

for any two times t and to. Here, H = 1/2 for ordinary Brownian motion. 
Equation (9.12) defines a random function and applies at the instant to 
whether or not the earlier values of X(t) (for t < to) are known. Often 
equation (9.12) is supplemented with the extra condition X(O) = 0, but 
this is only a matter of cOllvenience. With the definition in equation (9.12) 
one finds the position X(t) given the position X(to) by choosing a random 
number e from a Gaussian distribution, multiplying it by the time incre­
ment It - tolH and adding the result to the given position X(to). This 
procedure is valid also for t < to. The function defined by equation (9.12) 
is continuous but it has no derivative. It follows from the definition (9.12) 
that the random function X(t) has the distribution given in equation (9.9). 

It follows from equation (9.9) that the reduced variable x defined by 

X(t) - X(to} 
x-......",.~~-~~-

- V21>r(lt - tol/r)H 
(9.13) 
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has for all t and to a Gaussian probability distribution: 

(9.14) 

with zero mean and unit variance. 

9.4 Fractional Brownian Motion 

Mandelbrot has introduced the concept of fractional Brownian motion as a 
generalization of the random function X(t) by changing the exponent from 
H = 1/2 to any real number in the range 0 < H < 1 in equations (9.12) 
and (9.13) (Mandelbrot and Van Ness, 1968; Mandelbrot, 1982), and he 
denotes such functions BH(t). Cases where H # 1/2 are properly fractional, 
whereas the case H = 1/2 is the special case of independent increments valid 
for Brownian motion, and for this case we write B(t) = B1/2(t). 

Using B H (t) instead of X (t) for the particle position it follows from 
equations (9.13) and (9.14) that a fractional Brownian process has zero 
average increments: 

and a variance of increments Vet - to), given by 

Vet - to)=([BH(t) - BH(tO)]2) 

=21>T(I(t - to)/TI)2H t"o.J It - tol2H . 
(9.15) 

It is apparent that both ordinary and fractal Brownian motion have vari­
ances that diverge with time. 

It is important to realize that fractional Brownian motion has infinitely 
long-run correlations. In particular past increments are correlated with 
future increments: Given the increment BH(O) - Ell ( -t) from time -t to 
o the probability of having an increment BH(t) - Bll(O) avera~ed over the 
distribution of the past increments is 

For convenience set BH(O) = 0 and use units so that T = 1 and 21>T = 1. 
The correlation function of future increments BH(t) \vith past increments 
-BH( -t) may be written 

(9.16) 
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where we have normalized with the variance of B H . The last equation 
follows directly from equation (9.15) . 

We first note that for H = 1/2 we find that the correlation of past and 
future increments G(t) vanishes for all t - as is required for an independent 
random process. However, for H =F 1/2 we have GCt) =F 0, independent of 
t! This is a remarkable feature of fractional Brownian motion which leads 
to persistence or antipersistence. For H > 1/2, we have persistence. In 
this case, if we for some time in the past have a positive increment - i.e., 
an increase - then we also have on the average an increase in the future. 
Therefore an increasing trend in the past implies an increasing trend in 
the future for processes with H > 1/2 - and furthermore this applies for 
arbitrarily large t! Conversely a decreasing trend in the past implies on 
the average a continued decrease in the future. 

Antipersistence is the term for the case H < 1/2. In this case an 
increasing trend in the past implies a decreasing trend in the future, and 
a decreasing trend in the past makes an increasing trend in the future 
probable. 

It should be noted that the behavior of a statistical record given by 
equation (9.16) is in conflict with what is normally either assumed or proven 
for statistical records and for physical systems. In fact for statistical physics 
the underlying assumption used to be that events may be correlated when 
separated in time At but they will definitely become uncorrelated in the 
limit t1t -+ 00. This statistical independence at large time and/or space 
sep~ations is an essential ingredient of the concept of thermal equilibrium. 
There are exceptions: As a second-order phase transition point, for example 
the critical point of a fluid, is approached, the correlation functions of the 
density develop a component which has no intrinsic length scale or time 
scale. As a consequence the free energy of the system has a critical part 
that has the scaling form of equation (2.13), and power-law behavior of the 
correlation functions becomes the rule rather than the exceptional case. 

For time series of observations we have discussed a method, developed 
by Hurst, which when applied to many natural phenomena leads to the 
conclusion that they appear to exhibit persistence over a wide range of 
time scales. Fractional Brownian motion is useful in modeling the time 
series of these phenomena. 
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9.5 Definition of Fractional Brownian 
Motion 

Insight into the nature of fractional Brownian motion may be obtained 
by implementing such a process by computer simulation to generate re­
sults similar to those presented for ordinary Brownian motion in figure 9.1. 
Mandelbrot and Van Ness (1968) defined the random function BH(t) with 
zero mean roughly as follows: 

BH(t) = 1 1 -1t (t - t,)H-1/2 dB(t') . 
r(H + 2) -00 

(9.17) 

Here r( x) is the gamma function. This definition states that the value of 
the random function at time t depends on all previous increments dB(t') 
at time t' < t of an ordinary Gaussian random process B(t) with average 
zero and unit variance. 

The notation dB(t) for a random variable becomes transparent when 
one tries to evaluate the integral by replacing it by a summation. Choose 
time units so that t is an integer time variable, and divide each time 
unit into n small time steps for the purpose of approximating the inte­
gral by a sum. Then we may write the time of integration t' = i/n with 
i = -00, ... , -2, -1,0,1,2, ... , nt. The increment dB(t') of the underlying 
independent Gaussian process may then be written n- 1/ 2ei, where ei now 
is a discrete Gaussian random variable of average zero and unit variance. 
The factor n- 1/ 2 in front of e takes care of the rescaling of Brownian incre­
ments with decreasing time steps [see equation (9.8)]. We therefore obtain 
the approximate expression 

1 nt ( .)H-1/2 
BH(t) ~ r(H 1).L: t - : n-1/2ei. 

+ 2 1=-00 

(9.18) 

It is clear that this sum does not exist and that the integral in equa­
tion (9.17) is divergent as t' -+ -00. We have to replace the rough defini­
tion by a more precise definition used by Mandelbrot and Van Ness (1968). 
Given the value BH(t = 0) we have 

BH(t) - BH(O) = 1 1 1t K(t - t') dB(t') . 
r(H + 2) -00 

(9.19) 

Here the simple power-law kernel in equation (9.17) is replaced by the 
modified kernel 

" , {(t - t')H -1/2 , 0 <t' < t 
J\. (t - t ) = {(t _ t,)H-l/2 _ (_t,)H-1/2} , t' < 0 (9.20) 
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This kernel vanishes quickly enough as t' -+- -00 to make the expression 
properly define the random function BH(t). 

The equation (9.19) has the form of a general linear response ex­
pression. Here an independent Gaussian increment dB(t') of magnitude 
unity at time t' gives a contribution to the fractal Brownian 'particle' posi­
tion BH(t) at a later time t as determined by the linear response function 
K(t - t'). 

The unusual feature of K(t) "'oJ tH- 1/ 2 , is that the power-law form has 
no intrinsic time scale, or unit of time, and we find the scaling form of 
equation (9.19) by changing the time scale by a factor b to obtain 

BH(bt) - BH(O) = ( 1 1) I bt K(bt - t') dB(t') . 
r H +"2 -00 

(9.21) 

Here we introduce a new integration variable t' = bi and use the result that 
for an independent Gaussian process we have in distribution that dB(t' = 
bi) = b1/ 2dB(i). Using the relation K(bt - bi) = bH- 1/ 2 K(t - i) we then 
find that 

(9.22) 

is valid in distribution for any value of b. In particular, we may choose 
t = 1 and Ilt = bt and conclude that the increment of the fractal Brownian 
'particle' position, 

(9.23) 

is proportional to IlltlH in distribution. It follows therefore that the vari­
ance of increments is given by equation (9.15) with to = 0 and Ilt = t -to. 
This result is of course the basis for choosing the definition (9.19) for BH 
in the first place. 

9.6 Simulation of Fractional Brownian 
Motion 

The discrete version of BH(t) given in equation (9.18) has to be modified 
with the proper kernel in order to make the sum convergent. However, any 
calculation of BH must use a finite number of terms and the sums can only 
cover a range M in the integer time t. Dividing each integer time step 
into n intervals for the purpose of approximating the integral we have the 
following approximation (Mandelbrot and Wallis, 1969b-d): 

1 nt 

BH(t) - BH(t - 1) = r(H + 1) I: K(t - ~J n- 1/ 2ei . 
2 i=n(t-M) 

(9.24) 
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Here {ed, with i = 1,2, ... , M, ... , is a set of Gaussian random variables 
with unit variance and zero mean. The kernel K is given by equation (9.20). 
With a change of the summation variable and a rearrangement of terms we 
find that the discrete fractional Brownian increments are given by 

(9.25) 

With the procedure given in equation (9.25) a sequence of increments 
in B H may be generated from a sequence of Gaussian random variables. 
Note that this approximation is a sliding average over the Gaussian pro­
cess with a power-law weight function. Since only M integer time steps are 
included in the summation it follows that for integer times t ~ M, the in­
crements will become independent and this approximation to B H becomes 
an independent Gaussian process,. It is clear that the algorithm given in 
equation (9.25) is inefficient since the the sums of nM terms have to be 
evaluated for each increment in BH. Mandelbrot (1971) has proposed a 
fast algorithm for fractional Gaussian noise based on a weighted sum of a 
series of Markov-Gauss random variables with increasing correlation times 
in addition to a high-frequency Markov-Gauss term. However, the present 
algorithm suits the present exposition better and we will content ourselves 
with simulations having moderately large M. 

The effect of increasing n is to give a more precise approximation to 
the short-term behavior of BH(t) (which is not very important here) and 
we have chosen n = 8 in the illustrations. 

We have evaluated B H from the Gaussian process of 27,500 indepen­
dent steps for which the first 2500 steps are shown in figure 9.1. In fig­
ure 9.4 we show the fractal noise, i.e., the increments of BH given by 
ABH(t) = BH(t) - BH(t -1). For ordinary Brownian increments H = 1/2, 
and the noise is an independent Gaussian process which is what is normally 
called white noise. In figure 9.4 the fractal noises shown have H = 0.7 and 
H = 0.9. There is no dramatic change in the noise as H is increased. A 
closer inspection reveals, however, that as H increases the low-frequency 
noise increases and generates large amplitude excursions compared with 
the high-frequency components. 

In figure 9.5 we show the fractal Brownian function BH(t) as a function 
of time, using BH(O) = O. This function corresponds to the position of a 
particle that starts at the origin and uses the increments in figure 9.4 as 
steps along the x-axis. As the exponent H is increased the record of the 
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BH evaluated with M = 700, n = 8. (a) Ordinary Brownian increments for 
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FIGURE 9.6: The correlation of increments for fractal Brownian function 
V(t) evaluated with M = 700, n = 8 and with BH(O) = O. The lines 
correspond to V(t) = ItI2H, with H = 0.5, 0.7, 0.9. 

particle position increases in amplitude, and the noise is proportionally 
reduced. 

As compared with Brownian motion, fractal motion with H > 1/2 
moves anomalously large distances from the origin. In fact fractal Brownian 
motion has a variance in position given by equation (9.15), so if we use the 
Einstein relation in the form of equation (9.11) we can define an anomalous 
diffusivity for fractal diffusion: 

(9.26) 

The anomalous diffusivity is an important concept in the discussion of 
fractal transport phenomena. It arises in many contexts, for example in 
the discussion of the electrical conductivity of random systems. It should 
be noted that the anomalous character of the diffusivity in equation (9.26) 
is due to the fractal nature of a random walk in Euclidean space. If the 
walk is restricted to a fractal set embedded in Euclidean space one still 
finds an anomalous diffusivity but with changed exponent in the power­
law dependence on time (see for instance Gefen et al., 1983; Aharony, 
1985; Stanley, 1985). 

The normalized variance of increments as a function of the lag-time t, 
given by equation (9.15), may be written 

(9.27) 
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We estimate V(t) from the records shown in figure 9.5, and find that the 
resulting V(t) quite nicely approximates the expected behavior given in 
equation (9.27) for various values of H. However, the effect of using a 
finite value of M, and a finite length of the underlying independent Brow­
nian motion, reflects itself by the fact that the points estimated from the 
simulation fall below the theoretical expectation for lags of the order t > M 
(see figure 9.6). Therefore at t "" M the approximate discrete fractal noises 
begin to cross over to independent white noise. We may extend arbitrarily 
the domain over which the simulated noise is fractional by increasing M. 
However, more efficient algorithms must be used if one needs fractional 
noise over a very large range of time-lags. 

9.7 R/ S Analysis of Fractional Brownian 
Motion 

The scaling form of equation (9.22) gave the result (9.23) that the random 
function BH(llt) is proportional to IlltiH. This has the consequence (Man­
delbrot and Wallis, 1969d; Mandelbrot, 1982) that the range R( T) with lag 
T is also a random function with the scaling property 

Since the true variance S = 1 and t4e sample variance is ~ 1 for the 
normalized fractal Brownian function, it follows that the rescaled range 
R/ S is given by 

(9.28) 

in distribution. We therefore find that the Hurst exponent H can be esti­
mated by a fit of equation (9.28) to experimental or simulated results. 

We have performed an R/ S analysis of our simulations B H, as a test 
of this relation. In figure 9.7 we show the R/ S analysis of the independent 
Gaussian process shown in figure 9.l. The Hurst exponent estimated from 
our simulations of this process is H = 0.510 ± 0.008, which is in good 
agreement with the theoretical result H = 1/2. 

For the fractal Brownian function BO.9(t), shown in figure 9Ac, the 
R/B analysis is shown in figure 9.8. We see that these results are quite 
different from the ordinary Brownian process. However, we find that the 
Hurst exponent H = 0.81 ± 0.02 estimated from the data is a little below 
the H = 0.9 used to generate the data. It should be remembered, however, 
that the simulations generate only approximate fractal Brownian functions 
since we use a finite memory term M = 700, and a finite resolution n = 
8. It is therefore reasonable that the Hurst exponent estimated from the 
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FIGURE 9.8: RIS as a function of the lag T for the fractal Brownian function 
BH(t) with H = 0.9. The dotted line is the asymptotic result for an 
independent Gaussian process RI S = V 1("T 12. The line is the fitted curve 
RIS = (aT)H with H = 0.81 ± 0.02 and a = 0.53 ± 0.06. 

simulations is a little low, since at lags T > 700 we start to cross over to an 
independent Gaussian process with H = 1/2. We conclude that the Hurst 
exponent may be accurately obtained from an analysis of well-defined data 
sets with about 2500 observations. 



180 CHAP. 9 • RANDOM WALKS AND FRACTALS 

1.0 r-----'�-----r--I----�,...----.... �------.. 

i', 
~~, -

' ..... , 
~-- "-
~- --- -----~ 0.0 ~ -_-..!::"--__ -....:- -

-------~-------".~ 
'-' - / 
'"'" -­,,' - / -0.5 ~ "...... //-" -~ .... -

-1.0 '--___ ~I ___ ___I_l ____ "--I ___ ..l.-1 ___ ....1 

0.0 0.2 0.4 0.6 0.8 1.0 
x-position 

FIGURE 9.9: The process of successive random additions. The lines connect 
points of the same generation. The three largest circles represent the first 
random additions to three altitudes that initially were zero. The five next 
largest circles are obtained by interpolation of the first three values at the 
midpoints, and then adding smaller random increments to all five points. 
The next generation produces the values at nine points, marked with the 
smallest dots. 

9.8 Successive Random Addition 

R. F. Voss has introduced methods for generating not only ordinary frac­
tional Brownian motion but also fractionally Brownian surfaces and clouds. 
Voss (1985b) calls his algorithm successive random addition. We may de­
scribe his algorithm as follows, referring to figure 9.9. In order to construct 
a fractional Brownian curve where altitude or vertical position X(t) is a 
fractional Brownian motion we must require that the variance of increments 
for the position be given by 

Vet) = ([X(t) - X(0)]2 ) = Itl2H 0'5 . (9.29) 

This is just a rewritten form of equation (9.27), where 0'5 is the (initial) 
variance of the random additions to be discussed. 

The following process, introduced by Voss, generates a fractional Brow­
nian motion to an arbitrary resolution. The starting point is a sequence 
of positions X(t1), X(t 2 ), ... ,X(tN) at the times t1,"" tN, We choose 
N = 3 at ti = 0, 1/2, 1 and set the positions equal to zero. Next, the posi­
tions X(td, X(t2), X(ta) are given random additions chosen from a normal 
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distribution with zero mean and unit variance: (j2 = (jf = 1. The midpoints 
of the time intervals become additional times at which the positions are es­
timated by interpolation. The times are now tl,"" t5 = 0,1/4, 1/2,3/4 ,1. 
All positions are now given a random addition with zero mean and a reduced 
varIance 

(j~ = (1/l)2H (jr . 
These five new positions are again interpolated to the midpoints of the 
time intervals to give nine positions at nine times. After n applications 
of this algorithm we have defined the position of the fractional Brownian 
particle at (1 + 2n) times. The positions are obtained by the interpolation 
and random addition process. The variance of the addition in the n-th 
generation of this process is 

2 (/ )2H 2 (1/ )2Hn 2 (jn = 1 2 (jn-l = 2 (jo . 

Voss shows that this process leads to self-affine curves, which have a fractal 
dimension D = 2 - H. 

We have generated such curves for various values for the Hurst ex­
ponent and the results are shown in figure 9.10. The curves have been 
rescaled so that they all have zero mean and unit sample variance. The 
case H = 0.5 is that of ordinary Brownian motion, found in many applica­
tions. The noise from an amplifier, for example, is often assumed to have 
the form given by the H = 0.5 curve. 

PERSISTENT behavior is obtained for 0.5 < H < 1. An example of a 
persistent process with H = 0.92 is the statistics of ocean waves discussed 
in chapter 11. Persistence means here that if the wave-height has been 
increasing for a period t, then it is expected to continue to increase for a 
similar period. Conversely, if the wave-height is observed to decrease for a 
period t, then it is expected to continue to decrease for a similar period. 
In other words, persistent stochastic processes exhibit rather clear trends 
with relatively little noise. In fact one tends to look for periodicities in the 
records of persistent stochastic processes (see figure 9.10). 

ANTI-PERSISTENT stochastic processes, on the other hand, tend to 
show a decrease in values following previous increases, and show increases 
following previous decreases. Fractal Brownian processes exhibiting such 
behavior have H in the range 0 to 1/2. The record of an anti-persistent 
process, such as the H = 0.1 curve shown in figure 9.10, appears very 
'noisy.' They have local noise of the same order of magnitude as the total 
excursions of the record. 

Voss has generalized the successive random addition algorithm to two 
and higher dimensions. His fractal landscapes are generated by interpola­
tion on a square grid and with the same random addition with decreasing 
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FIGURE 9.10: Fractional Brownian curves generated using Voss's successive 
random addition algorithm with different values for the Hurst exponent H. 
The fractal dimension of the curves is D = 2 - H. The curves have been 
calculated with a resolution of 1/2048. 
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variance as discussed above. We show examples of landscapes generated 
using Voss's algorithm in chapter 13. 

Voss (1985b) also shows that the lac'Unarity of the resulting fractal 
surfaces can be controlled by choosing the reduction ratio to be r instead 
of 112, so that in the n-th generation one gives random additions with 
variance O'~ = r2Hn 0'5. Voss has generated pictures of clouds by assigning 
water concentrations c(x) in three-dimensional space and painting regions 
that have c above some fixed level white. His cloud pictures have a quality 
comparable to that obtained by the best painters. In this view clouds 
are fractal volumes in a four-dimensional self-affine space consisting of the 
usual three spatial coordinates plus the dimension of water concentration. 



Chapter 10 

Self-Similarity and Self-Affinity 

The probability distribution for Brownian motion satisfies the scaling rela­
tions given by equations (9.8) and (9.10), analogous to the scaling relations 
(2.12), (2.13) and (2.16) discussed previously. However, there is a very im­
portant extension here. The first step is that we now have a function that 
is scaling in two variables e and t. This is nothing new since the von 
Koch curve in figure 2.8 already depends on two variables x and y, and 
we have already shown that the curve is self-similar with a scaling factor 
r that is directly related to the fractal dimension D of the curve - see 
equation (2.10). The second and important step is that time and position 
are scaled with different ratios - when we scale time by b to bt, we scale 
position by bH • 

The similarity transformation discussed (see chapter 2) transforms 
points x = (Xl, ... , XE) in E-dimensional space into new points x' = 
(rx1, ... , rXE) with the same value of the scaling ratio r. A bounded 
self-similar fractal set of points S is self-similar with respect to a scaling 
ratio r if S is the union of N non-overlapping subsets S1, . .. ,SN, each 
of which is congruent to the set reS) obtained from S by the similarity 
transform defined by 0 < r < 1. Here congruent means that the set of 
points Si is identical to the set of points r( S) after possible translations 
and/or rotations of the set. The similarity dimension is then given by 

InN 
Ds = In1/r . (10.1) 

The set S is statistically self-similar when S is the union of N distinct 
subsets each of which is scaled down by r from the original and is identical 
in all statistical respects to reS). Often, random sets - such as a coastline 
- are statistically self-similar not only for a given value of the scaling ratio 
r, but for all scaling ratios above some lower cutoff (the micro-scale) and 

184 
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some upper cutoff (the macrc>-scale). For such sets the box-counting method 
is useful in estimating the fractal dimension of the set and it coincides with 
Ds. 

In many cases of interest we study sets that are not self-similar. For 
instance, when we study the motion of a Brownian particle the position of 
the particle and the time are different physical quantities and we cannot 
expect X and t to scale with the same ratio. We therefore need to discuss 
the concepts related to self-affinity. 

An affine transformation transforms a point x = (Xli"" XE) into new 
points x' = (rlxl,.'" rExE), where the scaling ratios r}, ... , rE are not all 
equal. For an example see the following section. 

A bounded set S is self-affine with respect to a ratio vector r = 
(rl' ... , rE) if S is the union of N nonoverlap ping subsets SI, ... , S N, each 
of which is congruent to the set r( S) obtained from S by the affine transform 
defined by r. Here congruent means that the set of points Si is identical 
to the set of points reS) after possible translations and/or rotations of the 
set. 

The set S is statistically self-affine when S is the union of N nonover­
lapping subsets each of which is scaled down by r from the original and is 
identical in all statistical respects to r( S) 

More details on self-affine and self-similar sets are found in Mandel­
brot's book (1982), and in papers by Voss (1985a,b). A paper by Barnsley 
and Sloan (1988) discusses interesting applications of the iteration of self­
affine transformations. 

The fractal dimension of even the simplest self-affine fractals is not 
uniquely defined. For a recent discussion see Mandelbrot (1985, 1986). 
First, the similarity dimension is simply not defined; it exists only for self­
similar fractals. What about the box dimension DB? This dimension can 
at least be evaluated 'mechanically' for a set of points such as the record of 
a fractal Brownian function BH(t). For the independent Gaussian process 
we find a record of position X(t) as a function of time as shown in figure 9.1. 
Let us cover that record with 'boxes' of width bT in time, and of length ba 
in position, so that the smallest box is T x a. The box dimension is then 
defined as in equation (2.4) by 

N(b' a '1") _ b-DB , , , (10.2) 

where N(b; a, '1") is the number of boxes needed to cover the record. Since 
we have used integer time in our simulations we take the minimum box 
width to be T = 1, and use a small height a = 0.0001. We find that 
N indeed follows equation (10.2) as shown in figure 10.1a. From a fit of 
equation (10.2) to these results we find DB = 1.51 ± 0.02. If we use a = 1, 
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FIGURE 10.1: The number of boxes N(b; a, r) of size b X (a, r) as a function 
of the box scale factor b for the record B(t) of an independent Gaussian 
process consisting of 7500 steps. (a) Using a = 0.0001 and r. = 1 we 
find a fit with DB = 1.51 ± 0.02. (b) Using a = 1 and r = 1 we find 
DB = 1.03 ± 0.02. 

i.e., we make the minimum box height equal to the typical step length, 
then we find DB = 1.03±0.02 (figure 10.lb). 

Why do we get this difference? Let the time-span of the record be T. 
Then we need Tjbr segments of length br to cover the time axis. In each 
segment the range of the record is of the order ilBH(br) = bH ilBH(r), and 
we need a stack of bH ilBH(r)jba boxes of height ba to cover that range. 
Therefore we need on the order of 

N(b. a r) = bH ilBH(r) x T ,...; bH- 2 ,...; b-DB 
, , ba br (10.3) 

boxes to cover the set. We therefore find the relation 

D=2-H, for self-affine records. (lOA) 
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FIGURE 10.2: The number of boxes N(b; a, r) of size b x (4.10-4, 1) as a 
function of the box scale factor b for the record BH(t) of an H = 0.7 fractal 
Brownian function of 2500 steps. The curve is a fit with DB = 1.30 ± 0.02. 

In this argument we used boxes that were small with respect to both the 
length of the record T and the range of the record; therefore the relation 
D = 2 - H holds in the high-resolution or loeallimit in the analysis of 
the structure of the record of a fractal function. Since we have H = 1/2 
for independent Gaussian Brownian motion, we expect D = 1.5, which 
is consistent with the results shown in figure 10.la. Also for a fractional 
Brownian function with H = 0.7, we find that equation (lOA) is satisfied, 
as shown in figure 10.2. 

The argument just given breaks down if in the box-counting method 
we use boxes that are not small with respect to the range of the record. 
In particular, if we choose a to be of the order of the typical step length 
a = ~ = l, then in each time segment of order br only of the order of 
1 box in the stack is needed to cover the span ilBH(br), and therefore we 
find 

N(b; a, r) '" 1 x ~ ,.... b- 1 • (10.5) 

The box dimension then is DB = 1. This is precisely the result we found 
in figure lO.1b using a = 1. Note that we will always reach this limit if 
we keep increasing our box size b. By increasing b sufficiently we sooner 
or later reach a box size that covers the entire range of B H, with a finite 
time br. N ow extend the time span T of the record to nT. The number 
of boxes needed to cover the full record will increase as n, which implies 
D = 1. The self-affine record has a global value of the fractal dimension 
D = 1, i.e., globally a self-affine record is not fractal. 

V/e can conclude that for self-affine fractal records we must distin-
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guish between the local fractal dimension D = 2 - H and the global fractal 
dimension D = 1 (Mandelbrot, 1985, 1986; Voss, 1985a). 

Another dimension that may be evaluated mechanically is the divider 
dimension obtained by walking a yardstick or divider with an opening 6 
along a curve to measure its length. For self-similar fractal curves, such as 
coastlines, we expect 

(10.6) 

However, a yardstick that has dimension time when used along the t-axis 
and length when used along the x-axis, as required for the evaluation of 
the length of a self-affine record, does not make much sense. We can make 
a trace of the self-affine function on 'paper' and measure its length there. 
The measured length with a ruler of length 6, placed such that it covers a 
time step br, will give a contribution to the length of the order of 

(10.7) 

By choosing a sufficiently large magnification along the x-axis, or using a 
small a, the last term in the square root above dominates and we have 
6 i"J bH . The number of such segments along the time axis is T /br ,...., b-1 ...... 

6-1/ H, and we find the length 

(10.8) 

Therefore we find that the divider dimension is DD = 1/ H, in the local 
limit where the x-scale is magnified. If we instead magnify the time scale, 
so that the fluctuations in X(t) are barely visible on the 'graph paper,' 
then the first term in the square root dominates and 6 ,...., b. The length 
will be L ,...., 6 x T /b ,...., 6° and we find D = 1. Again the global dimension 
is D = 1, and the local dimension is fractal and D = l/H. This dimension 
is sometimes called the latent fractal dimension (Mandelbrot, 1983; Voss, 
1985a), and it is related to the fractal dimension of the trail of the Brownian 
particle. 

We summarize the various fractal dimensions discussed here in a table. 
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Dimensions for the fractal Brownian function B H 

Trail Record 
Dimension 

self-similar self-affine 

Local Global 

Hausdorff D I/H 2-H -
Box DB I/H 2-H 1 
Divider DD - l/H 1 
Random walk Dw l/H - -
Similarity Ds InN = I/H - -In l/r 

10.1 The Strategy of Bold Play 

An interesting example of a singular self-affine function provided by gam­
bling theory has been discussed in a popular exposition by Billingsley 
(1983) of ideas introduced by Dubins and Savage (1960). He begins with 
the following problem: A gambler enters the casino with capital of $900 
and the intent (or hope) of increasing it to $1000. He stakes $1 on each 
turn of the wheel, and on each turn the probability of winning $1 is p and 
the probability of losing $1 is q = 1 - p. His strategy is to play until his 
fortune has either increased to $1000 or dwindled to nothing. We shall see 
that this strategy, which I call timid play, is not a good strategy, and that 
the strategy of bold play defined later is much better. 

The probability MT(z) of success under timid play, that is, the prob­
ability of reaching the goal G = $1000, starting with initial capital C = 
$900 = xG, is (e.g., Feller, 1968) 

{
X, if p = q = ! ' 

MT(X) = (q/p)z:G - 1 (12)(I-Z:)G. 1 
(q/p)G _ 1 ~ q , If P < '2 < q . 

(10.9) 

Here the approximation is valid because q/p > 1 and C and G are large 
numbers. The small stake, compared to the distance to the goal, makes 
it a good approximation to consider the gambler's capital to increase and 
decrease by a random walk process. For fair odds the process is simply an 
unbiased random walk and the gambler has a passable chance of success: 
MT(Z = 0.9,p = 0.5) = 0.9. But no real casino gives fair odds. Of the 38 
spaces on an ordinary roulette wheel 18 are red, 18 are black, and 2 are 
green and therefore p = ~. A gambler betting on red has a probability of 
successfully increasing $900 to $1000 by wagering $1 at each turn of the 
wheel that is only about 0.00003. 
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Suppose the gambler is a true optimist and hopes to convert initial 
capital of $100 into a final goal of $20,000 before running out of money. 
His chances of success are 0.005 if p = 0.5 but only about 3 x 10-911 for 
p = :. The gambler has to be desperate to hope for success under these 
conditions. The chance of success is completely negligible. The gambler is 
not, however, forced to set his wager at $1. Suppose he wagers $10 instead. 
Then his initial capital consists of ten $10 bills, and he aims to increase 
it to 2000 $10 bills. This corresponds to setting G = 2000 and C = 10 in 
equation (10.9). The probability of success increases from 3 x 10-911 to 
about (p/q)2000-10 ~ 10-91 • This strategy of using larger bets increases 
the gambler's chance for success by an enormous factor - his probability 
of success remains, however, completely negligible. 

Large bets increase the gambler's chance of success. This leads to the 
strategy of bold play (e.g., Billingsley, 1983): On each turn of the roulette 
the gambler stakes his entire current fortune if it does not exceed half the 
goal, and otherwise he bets the difference between the goal and the current 
fortune. Bold play maximizes the chance of success in reaching the goal 
exactly when p < !. The probability of reaching the goal of G = $20,000, 
starting with $100, is 0.003 when p = ~:. We see that this is a very much 
better strategy than the strategy of timid play just discussed. 

In analyzing bold play it is convenient to go to a new scale in which 
the gambler's fortune x lies between 0 and 1 and his goal is 1. We write 
M(x) for the probability of success (under bold play) starting from an 
initial capital of x. The strategy of bold play may then be formulated as 
follows. Suppose first that the gambler's fortune is in the range 0 < x < !, 
so that he stakes the amount x. If his fortune is to reach 1, he must win in 
the first turn (probability p) and then, from his new fortune x + x = 2x, he 
must go on to eventual success (probability M(2x)). The product pM(2x) 
is the probability of winning on the first turn and then going on to ultimate 
success. Therefore the probability of success starting with x < ! is given 
by the first of the following two equations: 

M ( x) = pM (2x) , for 0 < x < ~ , 
M ( x) = p + (1 - p) M (2x - 1), for! < x < 1 . 

(10.10) 

Suppose next that the gambler starts with an initial fortune in the 
range 1 < x < 1 so that he stakes the amount 1 - x. He can win on the 

2 - - , 
first turn of the wheel (probability p). He can also lose on the first turn 
(probability q = 1-p), and then go on to win starting with the new capital 
x - (1 - x) = 2x - 1 (probability M(2x - 1)). The probability of success 
starting with capital ~ < x < 1 is therefore given by the second of the pair 
of equations (10.10). 
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FIGURE 10.3: Two affine transformations of the coordinate system mapping 
the unit square into rectangles by the L and R transformations given in 
equation (10.10). A combination of the two transformations reproduces 
the original self-affine curve y = M(z), calculated for p = 0.25. 

These equations are same as the equations (6.7) for the measure for 
the multiplicative process discussed in section 6.2. An example of the 
probability of success under the strategy of bold play, M(z), as a function 
of z with p = 0.25 is shown in figure 6.3 and also in figure 10.3. This 
probability (or measure) is an increasing function of z, and the function is 
singular in the sense that it almost everywhere has a slope of zero. The 
probability of success increases only on a set of points of Lebesgue measure 
zero where the left-hand derivative of M(z) is +00 and the right-hand 
derivative is 0 (see Billingsley, 1983, for a clear discussion). The curve 
M(z) has the length L = 2, and is therefore not a fractal curve - it is a 
fractal measure as discussed in section 6.2. 

The equations (10.10) represent an invariance of the measure M(z) 
under affine coordinate transformations. These transformations are given 
by 

L: (z, y) ~ (~z,py), 

R: (z, y) --.. (~,p) + (tz, (1 - p)y) . 
(10.11) 

These transformations map the curve y = M(z) into itself - the curve 
is self-affine. There are two transformations. The transformation L maps 
the unit square into the rectangle marked (L) in figure 10.3. This transfor­
mation simply scales down the z-axis by a factor of ~ and the y-axis by a 
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factor p. The R-transformation also scales down the x-axis by a factor of 
~, but the y-axis is scaled down not by p but by a factor (1 - p). The R­
transformation in addition translates the scaled-down unit square so that 
it is mapped into the rectangle marked (R) in figure 10.3. 

Mandelbrot (1985, 1986) has discussed many aspects of self-affine frac­
tal curves that may be generated by families of affine transformations. He 
introduces a class of recursively self-affine fractal curves for which the re­
lations given in the table in the previous section hold. He also discusses 
additional dimensions that may be used to characterize self-affine fractal 
curves. 



Chapter 11 

Wave-Height Statistics 

Waves at sea are not only interesting to watch - they are of vital im­
portance to marine activities. A large fraction of losses of lives and ships 
are due to the action of large waves in rough weather. Detailed observa­
tions of wave-height, period, and other characteristics have therefore been 
performed at many locations all over the world. 

We will here discuss wave data from Troms~flaket, made available to 
us by the Norwegian Institute of Meteorology. The wave data for the period 
1980-1983 have been obtained using a buoy to record the water level. The 
wave data are collected by recording the wave-height 2048 times at 112-
second intervals every 3 hours, i.e., for a period of about 17 minutes. The 
wave-height is defined as the difference between the highest and lowest 
water level between two 'zero up-crossings' of the ~ater level. Here the 
zero level is the running average water-level. 

This massive set of observations is first analyzed by conventional meth­
ods. For instance one calculates the significant wave-height h, as the av­
erage of the largest 1/3 of the waves recorded in the 17 -minute observation 
interval. The maximum wave-height recorded in the interval, hmax , is about 
1.8 h,. Vie will use h, in our discussion since this is a robust measure of 
the wave-height. The reason is that it is quite probable that the maximum 
wave-height occurs outside the observation interval, which ouly represents 
9.4% of the total time. In fact we may estimate the maximum wave-height 
as 1.8 h,. Other parameters characterizing the waves - such as the aver­
age period T, for the highest 1/3 of the waves, the average period Tz of the 
zero crossings and the energy spectrum for the 2048 readings - are also 
calculated. 

Much interest is related to the prediction of the 'lOO-year wave,' i.e., 
the question: How can we best estimate extreme wave-heights on the basis 
of a limited record of observed wave-heights? A large body of research 
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FIGURE 11.1: The maximum significant wave-height h, at Troms~fJ.aket, 
observed every 3 hours in 1980 (The Norwegian Institute of Meteorology). 

addresses such questions - see for instance Fj~rtoft (1982) - and we 
shall not attempt to review this here. However, such predictions must be 
based on an understanding of the statistics of wave-heights - which may 
be fractal. We have therefore analyzed wave-height data taking the record 
h,(t) to be a fractal record similar to fractal Brownian motion. 

11.1 R/ S Analysis of the Observed hs 

In figure 11.1 we show the highest significant wave-height h, for each day 
in 1980. The maximum h, is 10.7 m and the highest recorded value of 
hmax is about 19 m. The seasonal variations are a significant feature of the 
wave-height data. 

Interpreting the observed wave-heights as steps in a Brownian motion 
we make the identification h,(t) -+ e(t), in terms of the notation intro­
duced in previous chapters. With this identification we may naively just 
go ahead and calculate R/ S as a function of the lag T for the wave-heights 
on Tromsj2}fJ.aket. As shown in figure 11.2 we find a very nice fit of the Hurst 
law R(T)/S -- TH to the data with a Hurst exponent H = 0.87 ± 0.01. 

This rather high value of the Hurst exponent indicates that the wave­
height statistics are strongly non- Gaussian. And since the observed value 
of H is significantly above 1/2 we are tempted to conclude that the wave­
height exhibits persistence. 

A closer inspection of figure 11.2 shows, however, that there is some 
structure in the curve at lags T near one year. This structure is clearly 
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FIGURE 11.2: RIB as a function of the lag T, for a process where the 
significant wave-height h, for Troms!2Sflaket is considered to be the random 
process {e}. The line represents a fit of the Hurst law RIB", TH to the 
data with H = 0.87 ± 0.01 (Fr!2Syland et al., 1988). 

related to the seasonal variations. The presence of periodic elements in 
the statistics is a complicating factor and there are no general rules for 
handling periodicities. Mandelbrot and Wallis (1969a) have considered the 
RIS statistics of sunspot activity, which have a well known ll-year cycle. 
Their results, shown in figure 11.3, give an apparent Hurst exponent of 
H = 0.93, which greatly exceeds 1/2. 

11.2 Rj S for Seasonally Adjusted Data 

There is little discussion in the literature on how to assess the influence 
of periodic elements on the estimated Hurst exponent (Mandelbrot and 
Wallis, 196ge). We have therefore adjusted the observations for seasonal 
effects. The result of this adjustment is that we may represent the observed 
data by a time series, as shown in figure 11.4. 

The normalized wave-height has zero mean, <e) = 0, and unit variance, 
<e2 ) = 1, so that figure 11.4 may be directly compared to the fractal noise 
and the fractal functions in figures 9.4 and 9.5. It is clear from the record 
X(t) in figure 11.4 that the excursions in X are large as compared to 
the 'noise.' The RI S analysis of the adjusted wave-height data shown in 
figure 11.5 now exhibits two regions. For times up to about 10 days, we 
find persistent statistics with H = 0.92 ± 0.02. On the other hand, for lags 
above T = 20 days, we find H = 0.52±0.02, consistent with an independent 
process. 
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FIGURE 11.3: R/S as a function of the lag time T for monthly Wolfnumbers 
of sunspot activity. The ll-year cycle is clearly visible in the detailed 
portion shown in the right figure (Mandelbrot and Wallis, 1969a). 

We still have a small anomaly near T ,...; 1 year but it is much weaker. 
The distinctly persistent behavior for T < 10 days did not change from 
the R/ S analysis of the original data shown in figure 11.2, which gives 
H = 0.94 ± 0.02 for this range. This result indicates that the R/ S analysis 
indeed gives a robust measure of the statistics of a time series, as discussed 
by Mandelbrot and Wallis (196ge). 

As discussed in chapter 10, we may estimate the fractal dimension of a 
self-affine record such as X(t) in figure 11.4 using the box-counting method 
- provided we remember that the result may depend on the size and shape 
of the initial box. In figure 11.6 we show the results of the box-counting 
method applied to the wave-height data. 

With small boxes we measure the local fractal dimension. The smallest 
box that can be applied to these data corresponds to the resolution of the 
data which is a = 0.1 m and T = 3 hours. With this box size we find 
D = 1.09 ± 0.02, which actually satisfies relation (lOA), D = 2 - H, with 
the Hurst exponent H = 0.92, obtained from the fit for T < 10 days. On the 
other hand, increasing the box size along the time axis to T = 120 hours 
gives D = 1.52 ± 0.03, which is the value expected for an independent 
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FIGURE 11.4: The normalized seasonally adjusted wave-height eCt) as a 
function of time for the observations of h, on TromSf/Sflaket. The bottom 
figure shows the cumulative sum X(t) = E~=oeCu) as a function of time 
CFr¢yland et al., 1988). 

random process. Again we find D = 2 - H, using the H = 0.52 obtained 
from the fit for T > 20 days. 

It is important to remember that the crossover from D = 1.09 to 
D = 1.52 is not due to the crossover from the local to the global fractal 
dimension for self-affine records. The two fractal dimensions have both 
been determined using the highest wave-height resolution consistent with 
the data, i.e., 0.1 m, and both represent local dimensions. The observed 
crossover is due to a crossover from persistent to independent random be­
havior in local values of D. 

We conclude that the wave-height statistics are persistent with a highly 
anomalous value of the Hurst exponent H = 0.92 ± 0.02, as estimated both 
from the R/ S analysis and from the determination of the box dimension 
of the fractal record. This persistence crosses over to an independent ran-
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FIGURE 11.5: RIS as a function of the lag T (in years), for a process where 
the seasonally adjusted and normalized significant wave-height ~ for Tro­
msflSflaket is considered to be the step in a (fractional) random walk. The 
lines are fits of the Hurst law RI S ~ TH. The fit for T < 10 days gives 
H = 0.92±O.02, and the fit for T > 20 days gives H = 0.52±0.02 (FrflSyland 
et al., 1988). 

dom process at a time scale of about 2 weeks. It should also be noted 
that this does not imply that the normalized wave-height ~ constitutes an 
independent Gaussian process in this range. It definitely does not, since 
it has a skewed distribution that does not allow for negative wave-heights. 
However, as discussed by Mandelbrot and Wallis (196ge), even extremely 
non-Gaussian independent processes controlled by either log-normal, hy­
perbolic or gamma distributions of the increments still give H = 1/2 in the 
RIS analysis, which is a very robust form of analysis. 

Our observation of fractal statistics of the height of ocean waves must 
be taken into account in the prediction of extreme waves on the basis of 
observed wave-heights. However, to our knowledge fractal statistics that 
may be used for such predictions have not yet been developed. The full 
statistical consequences of the fractal nature of wave-height data remain to 
be explored. 
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FIGURE 11.6: The number of 'boxes' N(b) of size b x (a, T) as a function of the box scale factor b for the cumulative normalized wave-height X(t), representing one data point every 3 hours, recorded at TroffiSj2Sflaket in the period 1980-1983. The top figure uses a minimum box of a = 0.1 m and 
T = 3 hours. The curve is a fit of N "" b-D with D = 1.09 ± 0.02. The bottom figure also uses a = 0.1 m but a time width T = 120 hours. The fit gives D = 1.52 ± 0.03 (Frj2Syland et al., 1988). 



Chapter 12 

The Perimeter-Area Relation 

For circles, squares, equilateral triangles and other polygons the ratio be­
tween the perimeter and the square root of the enclosed area, 

P = (Perimeter)/(Area)1 , 

is independent of the size of the polygon. The ratio p is the same for all 
closed curves of the same shape. The ratio p = 2ft, 4, and 6/3 i for circles, 
squares and equilateral triangles, respectively. 

For a collection of similar islands of different sizes, the ratio between 
the length of a nonfractal coastline of any island and the square root of 
its area is independent of the size of the island. However, for islands with 
fractal coastlines the length L( 6) of the coastline depends on the yardstick 
6 used to measure its length, and L( 6) -+ 00, as 6 -+ O. On the other hand, 
the area A( 6) of the island, measured by covering it with squares of area 
62 , remains finite as 6 -+ O. Mandelbro..t shows that for fractal curves the 
divergent ratio p should be replaced by the modified ratio given by 

PD = (Perimeter)l/D /(Area)! = [L(6)]1/D[A(6)]-!, (12.1) 

for each of the islands. Here D is the fractal dimension of the coastlines of 
the similarly shaped islands. The ratio PD is independent of the size of the 
island - but it does depend on the yardstick chosen. 

The perimeter-area relation as expressed by equation (12.1) follows 
from the definition of the fractal dimension D contained in equations (2.3) 
and (2.4). This is seen by comparing two similar islands of different area as 
shown in figure 12.1. The area and the length of the coastline of each of 
the islands is measured by using an area-dependent yardstick 6; = AV Ai( 6) 
for the i-th island. The area of the i-th island, when measured with a fixed 
yardstick 6, is Ai(6), and the parameter A is some arbitrary small number 
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FIGURE 12.1: Two similar islands measured with area-dependent yard­
sticks. 

- say 0.0001. The length of the coastline of the i-th island equals the 
perimeter of the polygon with N).. segments oflength 6* and Li(6*) = N)..6;, 
to this approximation. Now the important observation is that for similarly 
shaped islands N).. is independent of the size of the island. However, from 
equation (2.3) it follows that the length of the coastline of the i-th island is 
L(6) = L?6(1-D) = Li (6*)(0/0*)(1-D). We therefore obtain the expression 

N ow we express 6* in terms of A( 0): 

and it follows that the ratio 

is independent of the size of the island. However, the ratio PD(6) = 
N~/D >..6(1-D)/D does depend on the given yardstick length 6, and on the 
arbitrary factor>" used. Therefore, although PD(O) is related to the shape 
of the islands, it also contains arbitrary factors and so far we have no gen­
eral measure of shape. We conclude that islands similar in form satisfy the 
following perimeter-area relation due to Mandelbrot 

(12.2) 
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This holds for any given yardstick 6 small enough to measure the smallest 
island accurately. The constant of proportionality C = N>.AD depends on 
the arbitrary parameter A. The relation (12.2) is the basis for the practical 
determination of the fractal dimension in several interesting cases discussed 
in the following sections. 

As an example of the perimeter-area relation consider the quadratic 
Koch island in figure 2.9. The initiator is a square with sides a. The 
generator adds a small 'peninsula' and subtracts an equally large 'bay' as 
each edge of the previous generation is replaced. Therefore the iteration 
process does not change the area A( 6) = a2 • The n-th generation perimeter 
Ln = 4 . 8n(it . a is the length of the coastline when measured with a 
yardstick of length 6 = (it a = (it vIA. Therefore we may write the 
generation number as n = In (6/v'A)/ln i, and we find L6 = 4· 8n 6 = 
46 l - D AD/2. Here D = 3/2 is the fractal dimension of the coastline of the 
quadratic Koch island. We conclude that quadratic Koch islands satisfy 
the perimeter-area relation in the form of equation (12.2), with the constant 
of proportionality given by C = 4. 

Another example is provided by the triadic Koch curve. The island 
is considered to be the area between the original initiator, i.e., a straight 
line of length a, and the limiting Koch curve (see figure 2.8). The enclosed 
area is A = -J3a2/20, and in the n-th generation the total length of the 
coastline is Ln = a + 4n6, with the yardstick length 6 = (~t a. This gives 
the relation 

L6 = a + aD 6(l-D). 

We see that if we neglect the first term on the right-hand side we recover 
the perimeter-area relation (12.2). The neglected term represents the non­
fractal straight line basis of the islands. This example illustrates that we 
may expect the perimeter-area relation to hold only in the limit of small 
yardsticks 6, where the length of the fractal coastline dominates any regular 
part of the coastline. More complicated examples in which various regions 
of the coast have different fractal dimensions are easily constructed and 
one concludes that eventually the perimeter-area ratio PD is dominated by 
the region with the highest value of the fractal dimension. 

12.1 The Fractal Dimension of Clouds 

Lovejoy (1982) investigated the geometry of cloud and rain areas in the 
very large size range from 1 km2 to 1.2.106 km2 , and found that the cloud 
perimeter P = L is related to the cloud area A by the perimeter-ar~a 
relation (12.2), with the perimeter fractal dimension D = 1.35 ± 0.05. HIS 
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Radar rain areas; 0, satellite cloud areas (Lovejoy, 1982). 

results are reproduced in figure 12.2. Rain areas were studied by digitizing 
radar pictures at a resolution of 1 x 1 km. The radar senses the reflected 
microwave radiation primarily from the large rain drops. A connected set 
of pixels for which the rain rate exceeded 0.2 mm/hour (which corresponds 
to a light drizzle) constituted a rain area. The area A of a rain area is 
the sum of a connected set of such pixels, whereas the perimeter P or L 
is given by the number of rain pixels that have no-rain pixel neighbors. 
The curvature of the earth limits the radar analysis to rain areas < 40,000 
km2 • Lovejoy's results for the rain areas are represented by the black dots 
in figure 12.2. 

Infrared pictures of Indian Ocean clouds were sampled on a grid of 
4.8 x 4.8 km. The pictures were obtained by the geostationary operational 
environment satellite (GOES). In order to avoid effects of varying picture 
element size only data in the relatively undistorted region of 20° Nand 
200S, and within ± 30° of longitude of the subsatellite point were used. 
The GOES infrared sensor responds primarily to the blackbody radiation 
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emitted by the clouds and the surface. For clouds more than about 300 m 
thick, the infrared channel yields an estimate of the cloud-top temperature. 
Physically, the rain and cloud fields are closely related in the tropics, since 
they both occur in regions of convective draft, which causes moist warm 
surface air to rise, cool by adiabatic expansion and form clouds and rain in 
the resulting condensation processes. Much of these clouds is supercooled 
water rather than ice. Pixels with a temperature below -10°C were consid­
ered to be cloud pixels. The cloud area delineated by the -10°C threshold 
thus contaIns both cumulus and cirrus clouds. As before the cloud area 
was determined by counting the number of cloud pixels in the connected 
set defining a cloud, whereas the perimeter length was obtained by count­
ing the number of cloud pixels that had noncloud neighbors. The results 
for many different cloud areas are plotted as open circles in figure 12.2. 
However, it should be noted that for the satellite pictures perimeters have 
been increased by the factor (1 km/4.8 km)(l-D), to compensate for the 
difference in resolution of the radar and satellite data. This factor accounts 
for the prefactor 6(1-D) in equation (12.2). 

The most remarkable aspect of the results in figure 12.2 is the absence 
of any apparent bend or kink over a range of six orders of magnitude in 
area. The results in figure 12.2 represent clouds of different macroscopic 
shape, yet they still are all points on the same line in the area-perimeter 
plot. Selecting a different temperature in the cloud definition changes their 
area and perimeter, but in such a way that the points representing the 
clouds only shift position on the same line. This area-perimeter relation 
determines the fractal dimension of the cloud perimeters to be D = 1.35 ± 
0.05. It is important to realize that this result leads to the conclusion that 
there is no characteristic length scale e, in the range 1 km to 10,000 km, 
for the processes involved in clouds. This is a remarkable result since one 
might have guessed at e ...... 10 km - the height of the atmosphere. In 
addition clear air Doppler radar wind measurements show no length scales 
in the range 4 to 400 km, and Doppler wind spectra in rainy regions exhibit 
no length scale in the range 1.6 to 25 km. The conclusion is that the 
atmosphere exhibits no intrinsic length scale and is best described as being 
fractal- in fact it seems that clouds are self-affine fractals. 

Rys and Waldvogel (1986) studied the fractal shape of hail clouds. 
These severe convective clouds were observed using radar and they found 
the perimeter-area relation shown in figure 12.3. Each point in the figure 
corresponds to a particular time (at I-minute intervals) during the evolu­
tion of the hail storm. 

The figure clearly shows that there is a crossover at a perimeter Po 
marked by the dotted line in figure 12.3. This corresponds to a crossover 
diameter do ~ PO/1r = 3 ± 1 km. The results of linear fits of the perimeter-
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FIGURE 12.3: Log-log plot of the perimeter-area relation for hail storms. 
Every point corresponds to a particular time during the temporal evolution 
of a storm. From the linear fits (shown as full lines) of 24 different hail 
storms the averaged fractal dimensions in equation (12.3) were obtained 
(Rys and Waldvogel, 1986). 

area to the observed values are 

D = 1.36 ± 0.1, for P> Po , 

D = 1.0 ± 0.1, for P < Po . 
(12.3) 

Above the crossover these results give the same fractal dimension for the 
cloud perimeter as the one observed by Lovejoy. By contrast, for length 
scales below approximately 3 km, the authors find that the severely con­
vective hail storms have perimeters that are not fractal. 

Theory of the Fractal Dimension of Clouds 

Hentschel and Procaccia (1984) calculate the fractal dimension of cloud 
perimeters to be in the range 1.37 < D < 1.41 on the basis of their theory 
of relative turbulent diffusion. The structure of their theory is interesting. 
The central question is: How can the cloud change its overall shape in time 
and still exhibit a universal l fractal structure? Clearly the time develop­
ment of a cloud is not universal. The answer according to Hentschel and 
Procaccia lies in a subtle interplay between length scales and time scales 

1 Here the word uniller,al is used to indicate that the fractal structure is independent 
of initial conditions such as the size, height or other parameters specifying the initial 
cloud. 
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in fully developed homogeneous turbulence. In fact they have previously 
shown that their model offractally homogeneous turbulence (Hentschel and 
Procaccia, 1983a) leads to a fractal dimension Dp of the turbulent field in 
the range 2.50 < Dp < 2.75. 

Hentschel and Procaccia propose a simple model of a cloud. The state 
of the atmosphere is given by specifying such parameters as the temper­
ature, pressure, water content and droplet sizes, in addition to the tur­
bulent velocity field. In Lovejoy's experiments either droplet radius or 
temperature was used as a criterion for deciding whether a given part of 
the atmosphere was part of a cloud or not. In the proposed model one 
chooses for instance the local temperature 8 as a variable that is trans­
ported by the turbulent field - but it is assumed that the turbulent field 
is not affected by it. An equally acceptable choice would be the cloud 
droplet radii. The state of the atmosphere is given by specifying the func­
tion 8( x, y, z), and therefore the model ignores the cloud physics relating 
such factors as temperature, humidity and droplet sizes and considers only 
one so-called passive scalar variable - here 8 - and the turbulent wind 
field transporting this variable. For a given point r = (x, y, z) in space the 
function 8(x, y, z) has some value and therefore specifies a point (0, x, y, z) 
in an E = 4-dimensional space. The set of points S = H 0, x, y, x)} in 
four-dimensional space is fractal, with dimension DB = 4 - H, where the 
co dimension is H. Defining a cloud by the condition 0 < 00 defines a re­
gion in the four-dimensional space describing the atmosphere, which also 
has the fractal dimension De. However, the surface of the cloud defined 
by the condition O(x, y, z) = 80 is a set of points C in the ordinary E = 3-
dimensional space. This set of points is the intersection of the set of points 
S and the set of points So = HOo, x, y, z)}, which has the fractal dimension 
Do = 3. Formally we have C = S n So. The fractal dimension of the cloud 
surface C, is D = 3 - H. This follows from the 'rule of thumb' given by 
Mandelbrot (1982, p. 365) stating that the codimension of the intersection 
of two independent sets in E-space almost surely2 equals the sum of the 
codimensions of the intersecting sets. In the present case this gives 

(4 - D) = (4 - De) + (4 - Do) 

therefore (4 - D) = H + 1, or D = 3 - H as stated. By intersecting the 
cloud surface in three-dimensional space by a plane parallel to the ground, 
we obtain a set of points P - the perimeter, which, using Mandelbrot's 
rule of thumb, must have a fractal dimension Dp = 2 - H. We conclude 

2 A simple counter-example is provided by the intersection of the baseline (the original 
initiator) and the triadic Koch curve. This intersection is a Cantor set with the fractal 
dimension D = ln2/ln3 = 0.63 ... , whereas the rule of thumb gives (2 - Dn) = (2-
In4/1n3) + (2 - 1), or Dn = (ln4/ln3) -1 = 0.26 .... 
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FIGURE 12.4: Clouds simulated by the fractal sums of pulses model. Areas 
that have a rain rate below a given threshold are black. The rain rate is on 
a log scale with the highest rate being white. The exponent H = 0.6 was 
used in the simulation (Lovejoy and Mandelbrot, 1985) 

that if we obtain an estimate for the codimension H, we obtain estimates 
for the fractal dimensions of clouds. From Lovejoy's data we conclude that 
for clouds and rain areas H = 0.65 ± 0.05. 

Hentschel and Procaccia (1984) estimate the fractal dimension of the 
cloud perimeter to be in the range 

1.37 < Dp < 1.41, 

in excellent agreement with the results reported by Lovejoy (1982). We find 
it remarkable that such a simplified model of the atmosphere is capable of 
calculating the fractal dimension of clouds in agreement with observation. 
Maybe in the future other examples of observed fractal dimensions may be 
calculated from physical models of the system. 

Note that the cloud in four-dimensional space is self-affine not self­
similar. However, the surface of the clouds in three-dimensional space may 
be self-similar. This distinction has been emphasized by Voss (1985a, b ), 
who has generated truly remarkable pictures of fractal clouds - with a 
visual quality that had previously only been achieved by painters. 

Lovejoy and Mandelbrot (1985) propose a self-similar fractal model for 
rain fields. In this model the rain field is considered to be the superposition 
of 'pulses.' Each pulse covers an area A, and an increment in the rain rate 
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ilR = ±AH. The rain rate is chosen to randomly increase or decrease the 
total rain rate over the area A. The area is assumed to have a hyperbolic 
probability distribution: Pr(A > a) - a-t. Figure 12.4 shows the result 
obtained with H = 0.6. The resulting pictures look quite realistic. We have 
also generated cloud pictures by another algorithm, discussed in chapter 13. 

Lovejoy and Schertzer (1985) point out that the atmosphere is layered 
and clouds are not self-similar but self-affine, the vertical direction being 
singled out from the horizontal direction. In addition the effects of the Cori­
olis force lead to rotations. They also introduce a modification of the fractal 
sum of pulses model in which the pulses are distributed not uniformly but 
on a fractal set of points in space. Again realistic-looking pictures of clouds 
are generated. Mandelbrot (1986) comments that the self-affine function 
O( x, y, z) transforms in a self-similar manner in the horizontal directions 
x, y, when (x, y) ~ (rx, ry), and scales differently in the z and 0 directions 
using rG and r GH , respectively. Here, G is an extra Lipschitz-Holder ex­
ponent. In view of our discussion of multifractal measures it appears likely 
that one should in fact consider clouds to be fractal measures M(r), defined 
in space. The complete characterization of this measure probably involves 
a spectrum of fractal dimensions. In short clouds are multifractals, a view 
proposed by Lovejoy and Schertzer (1985) (see also Lovejoy et aI., 1987). 

12.2 The Fractal Dimension of Rivers 

We discuss here some of the results presented by Hack (1957), but earlier 
and later work on this subject exists. Hack studied rivers in Virginia and 
Maryland. In figure 12.5 the drainage area A above a particular locality 
in a river system is indicated. In the same figure the length L is measured 
along the longest stream to the drainage divide. Figure 12.6 shows the 
results obtained by Hack. The areas were determined from topographic 
maps and in a few cases from aerial photographs, by use of a planimeter. 
The length of streams was generally determined with a map measure, on 
maps or aerial photographs, along the stream and following meanders and 
bends. 

The straight line in figure 12.6 describes all the data well and is given 
by the Length-Area relation 

L = 1.4A'\ with a = 0.6, (12.4) 

where the unit of length is miles. Hack has also checked this relation by 
plotting 400 similar measurements made by Langbein et a1. (1947) in the 
northeastern United States, and he finds the same relation (12.4). Thus it 
is fairly well established that in the northeastern United States the length of 
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FIGURE 12.5: Drainage area A and the length L of the longest river above 
a given location. 
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FIGURE 12.6: Relation between stream length and drainage area (Hack, 
1957). 

a stream at any locality is, on the average, proportional to the 0.6 power of 
its drainage area at the locality - regardless of the geological or structural 
characteristics of the area. However, Hack has also considered two regions 
in the western United States and found that there a = 0.7. Therefore the 
relation (12.4) is not entirely general. 
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The solid circles in figure 12.6 represent two specific cases of departure 
from the general relation between length and area. The coefficient in the 
length-area relation is 1.4 (when units of miles and square miles are used), 
but is found to vary in the range 1 to 2.5, with an average value of 2.0 in 
sandstone. 

Following Mandelbrot (1982, p. 111) it is tempting to conclude that 
the result (12.4) gives the fractal dimension of rivers and streams to be 
D = 20' = 1.2, where D is interpreted as the fractal dimension of the main 
stream. This result is based on the assumption that all rivers as well as 
their basins are mutually similar. However, river systems are not mutu­
ally similar, and the arguments leading to the length-area relation (12.2) 
therefore do not apply. The lack of self-similarity was noted by Hack and 
expressed as follows: 

It is clear that drainage basins must change their overall shape 
in a downstream direction, becoming longer and narrower as 
they enlarge. Larger basins are more elongate; that 2S, more 
pear-shaped or cigar-shaped than small ones. 

Hack presents a model for the river system based on an analysis of 
the structure of river systems introduced by Horton (1945) to calculate 
the eA~onent 0' in equation (12.4). Horton labels rivers and tributaries 
by assigning each stream an order. We choose to label streams in such 
a way that the main stream has order i = O. Streams of order i have 
only tributaries of higher order (i + 1), (i + 2), .... The highest order, s, is 
assigned to streams that have no tributaries. All the streams in a drainage 
area may be labeled in this way, The length ratio rL, which is the ratio of 
the average length of streams of one order to the average length of streams 
of the next lowest order, is found to be approximately a constant and 
independent of stream order. The average length of a stream of order i is 
therefore given by 

where Lo is the length of the main stream. The bifurcation ratio rN is 
the ratio between the number of streams of one order and the number of 
streams of the next lowest order: 

Ni = rNNi-l = r~No . 
The bifurcation ratio is approximately independent of stream order. Note 
that No = 1, since there is only one stream of the lowest order. 

Since the 'the length of overland flow is about the same for all streams' 
(Hack, 1957) the area that drains directly into a (s-1~-ord~r strea.m must 
have the same average width, d, as the area that drams dIrectly mto the 
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s-order stream, and as a consequence this term increases in proportion to 
the length. Hack concludes that the drainage area of order s is given by 

Here we have used the expressions for Li and Ni to evaluate Hack's ex­
pression. Clearly the overland drainage length introduces a length scale 
into the problem that prevents a scaling behavior and limits the length 
of the smallest streams from below. Ignoring this last term in the equa­
tion above and setting d ~ L, = Lori we find that the order s may be 
written s = In(d/ Lo)/ln rL, and for a basin of order s the drainage area is 
approximately 

Here we have introduced the similarity dimension, D" for branching struc­
tures that exhibit Horton scaling.3 The exponent a = 1/ D, in Hack's 
model and not ~D as suggested by Mandelbrot. Hack discusses an exam­
ple in which rL = 1/2.4 and rN = 3.2, i.e., a = 0.75 and D, = 1.34. When 
the overland drainage term is included the length-area relation is no longer 
a power law. Approximating it by one leads Hack to the value a = 0.65, 
compared with the observed a = 0.61 for this area. 

The essence of Hack's model relating the bifurcation ratio rN and the 
length ratios rL is intuitively relevant to the observed power-law relation 
between length and area. However, the geometry of river systems remains 
obscure, and clearly the geometry of streams and rivers requires further 
study. 

3We have recently shown (E. L. Hinrichsen, K. J. Mil~y, J. Feder and T. J~ssangt 
J. Phys. A: Math. Gen. 22 L272-L277 (1989)) that DLA and experimental results on 
viscous fingering are self-similar in terms of branch orders, and that they have a fractal 
dimension given by D, = In rN /In(l/rd. Note that this expression for D, is analogous 
to the similarity dimension defined by equation (2.10) for Koch curves. Actually Horton 
and Hack label streams so that i = 8 for the main stream and i = 0 for streams with 
no tributaries. For numerical work our numbering is more convenient. We also use rN 

instead of rb for the branching ratio, and rL = l/r, for the length ratio in the notation 
of Hack. 



Chapter 13 

Fractal Surfaces 

Much of the broad interest in fractals has probably been generated by the 
striking computer-generated pictures of landscapes. The beautiful color 
pictures in Mandelbrot's last book (Mandelbrot, 1982) of valleys and of a 
rising 'earth' seen from a 'moon' have captured the imagination of scien­
tists and laymen alike. An early popular discussion by Gardner (1976) of 
Mandelbrot's work probably helped much in building interest - at least it 
was my first contact with these ideas. Even more spectacular pictures with 
haze in the valleys, also generated by R. F. Voss, have been published in a 
popular account in a widely circulated microcomputer journal (S!iSrensen, 
1984). Indeed the irregularity of the earth's topography over a large range 
of length scales indicates that useful models of landscapes may be obtained 
using fractals. 

In this chapter we first discuss simple fractal surfaces. Then we discuss 
our experience with the generation of landscapes. In the next chapter 
we discuss the recent experimental evidence for the fractal structure of 
surfaces. 

13.1 The Fractal Koch Surface 

A simple way of constructing a manifestly fractal surface is to slide the 
triadic Koch curve along a direction perpendicular to the plane of the 
Koch curve for a distance l, as shown in figure 13.1. In order to measure 
the area of such a surface, we would try to cover it with strips of length l 
and width 6. With small yardstick areas a = 6 x 6 we would need 

l 1 
N(6) = - x-

6 6D1 

212 
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FIGURE 13.1: A triadic Koch surface. D = 2.262 .... 

such pieces to cover the surface. Here the fractal dimension of the Koch 
curve is given by Dl = In 4/ln 3 as before. The first term in the expression 
for N (6) simply states that the number of a's needed per strip is i/6, 
. whereas the second term is the number of segments of length 6 needed to 
cover the Koch curve - see equation (2.6). The measure function Md is 
given by 

Md = N(6)6 d = i6d- D1- 1 • 

Since this measure remains finite only for d = D given by 

D = 1 + Dl = 2.262 ... , 

it follows from equation (2.3) that D is the Hausdorff-Besicovitch dimension 
of the surface. 

This result is another example of one of Mandelbrot's 'ruJes of thumb' 
for fractal sets (Mandelbrot, 1982, p. 365): For a set S that is the product 
of two independent fractal sets S1 and S2, the fractal dimension of S equals 
the sum of the fractal dimensions of Sl and S2' 

Here we use the set of points Sl defined by the triadic Koch curve in 
E = 2-dimensional space having dimension D, and we have generated a set 
S by the multiplication of the set S2, which is a line segment of length l in 
E = I-dimensional space. Thus, from any point in Sl we have generated a 
line of points in E = 3-dimensional space. The resulting set has dimension 
D = Dl + D2, with D2 = 1 for the line. 

Fractal surfaces of any dimension in the range 2 < D < 3 may be gen­
erated in a similar manner - but they are not realistic models oflandscapes 
and other irregular surfaces, which in general are much more isotropic in 
the horizontal plane than the translated Koch curve surfaces. Perhaps 
they could be used for surfaces resulting from directional wear, abrasion or 
polishing. 
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FIGURE 13.2: The first example of fractal Brownian islands. D 2.5 
(Mandelbrot, 1975b). 

13.2 Random Translation Surfaces 

A simple way of generating a more reasonable surface is to add to the height 
z(x, y) generated by the translation of a fractal curve successive layers of 
similar profiles obtained by rotating the first surface. Let ZD(X,y) be the 
surface profile generated by sliding a fractal curve of dimension D in the 
x, z-plane along the y-axis. We rotate this surface an angle ¢ in the x, y­
plane to generate the surface ZD(X, y I ¢), and finally we multiply the height 
by a factor h to define the surface ZD(X,y I h,¢) = hzD(x,y I ¢). Using 
such surface profiles we may generate fractal surfaces of height Z(x, y) given 
by 

Z(X, y) = L ZD(X, y I h, ¢). (13.1) 

If we add only a few layers of fixed h and random ¢, we readily generate 
interesting surfaces which - at least to the resolution of our computations 
- have the fractal dimension of the generating fractal surface or D(Z) = 
D(z). The question - what is the fractal dimension D(Z), in general? -
is probably a very difficult one. 

As an example of the complexities involved in the definition of the frac­
tal dimension of such surfaces consider one of the early models proposed 
by Mandelbrot (1975b). The simplest model is one in which the function 
ZD is simply a step function, corresponding to a horizontal plateau bro­
ken along the straight line x = 0 in the x, y-plane with unit difference in 
height along the resulting fault. This generating surface is not fractal and 
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FIGURE 13.3: The first example of fractal Brownian coastlines. D = 1.5 
(Mandelbrot, 1975b). 

we have D(z) = 1. To generate Z(x,y) choose tP with uniform probability 
in the range 0 to 21r, and choose h = 1/y'1i, for the n-th stage of con­
struction (thus making an individual cliff negligible in size, compared with 
the cumulative sum of the other cliffs). The resulting surface, shown in 
figure 13.2, is fractal with dimension D = 5/2, in spite of the fact that the 
generating surface is not fractal. Mandelbrot calls such surfaces generated 
by an infinite number of layers Brownian surfaces since any vertical section 
through the surface generates a curve characteristic of Brownian motion. 
The surface satisfies the scaling relation 

Z(AX, AY) = AH Z(x, y) 

in distribution for any value of A, and the co dimension H = 3 - D = 1/2. 
This scaling relation shows that the fractal surface is self-affine, not 

self-similar. It is a generalization to higher dimensions of the self-affine frac­
tals discussed in chapter 10. Note that we must distinguish local and global 
fractal dimensions for self-affine surfaces, just as for self-affine records. The 
question of how to deal properly with fractal surfaces in practice has not 
yet been completely resolved. For recent discussions see Mandelbrot (1985) 
and Voss (1985a,b). 

By filling the landscape with 'water' to a given level, coastlines and 
islands appear, as shown in figure 13.3. The fractal dimension of the coast-
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lines obtained by the intersection of a plane with the surface is D = 2-H = 
3/2, well above the value of about 1.3 observed for various coastlines. 

Mandelbrot (1975b) in addition states that the islands satisfy the 
Korcak distribution 

Nr(A > a) f'J a-B , (13.2) 

where Nr(A > a) is the number of islands having an area A greater than 
a prescribed value a. This relation is also called the number-area relation. 
The exponent B is given by B = iDcoast = 3/4. The observed value for 
the earth is B f'J 0.65, according to Mandelbrot, and ranges from 0.5 for 
Africa (one enormous island and others whose size decreases rapidly) up to 
0.75 for Indonesia and North America (less overwhelming predominance of 
the largest islands). 

13.3 Generating Fractal Surfaces 

We have made a number of simulations of surfaces that look like natural 
landscapes, at least to the extent permitted by the simple plotter graph­
ics available to most. It has been an interesting experience, well worth 
pursuing before more fancy graphics are attempted. 

From the discussion in the previous section it is clear that by superim­
posing an infinite number of randomly oriented nonfractal surfaces a fractal 
surface may indeed be obtained. For practical purposes it is better to su­
perimpose only a few fractal translation surfaces with random orientations. 
If in addition the generating translation surfaces are random, we expect 
to get reasonable surfaces with a rather limited amount of computational 
effort. 

When we look at a landscape we only see a certain area - this defines 
an upper length scale Lmax. In addition we have a minimum length scale 
Lmin determined by the resolution of the eye or the photographic film, or 
here by the numeric precision chosen for the x, y-coordinates. If we were 
using sinusoidal translation surfaces to generate surface relief, we could 
easily produce a rolling landscape. With a spatial frequency f we get a 
translation surface 

z(x,y) = C, sin(f x) , 

with an amplitude C,. Now the lowest frequency of interest is given by 
fmin f'J 1/ Lmax , since lower spatial frequencies simply appear to be constant 
additions to the height all over the surface. The highest spatial frequency 
of interest is given by the resolution fmax f'J 1/ Lmin, since finer detail will 
not be resolved. 
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FIGURE 13.4: The amplitude spectrum for fo = 0.004, Q' = 1.1 and,8 = 1.1. 

We have chosen to generate translation surfaces from superpositions of 
oscillating functions. We first define the frequency spectrum, by specifying 
the spatial frequencies in the form 

!; = ft-l = f~j, for j = 1,2,. .. . (13.3) 

This spectrum is discrete and is defined by the exponent Q' and the lowest 
frequency fo. The base frequency, fo, must be larger than fmin to produce 
visible effects. Increasing fo will result in pictures in which more of the 
landscape is seen in the observation window. The parameter Q' controls to 
a large degree the general appearance or type of landscape generated. We 
have chosen 0.7 < Q' < 1.4. Low values tend to generate alpine landscapes, 
whereas high values of Q' tend to generate rather smooth landscapes, like 
those common to southern Norway. The iterative form of the frequency 
spectrum (13.3) was chosen because it is a scaling form. 

In general, landscapes have the highest amplitudes at low frequencies, 
and we have chosen a self-similar or scaling form for the Fourier amplitudes: 

(13.4) 

The constant of proportionality in this equation is irrelevant since the final 
picture later will be scaled to fit inside a specified format. The parameter 
,8 should be chosen in the range 1.05-1.4 in order to obtain landscapes that 
look 'natural.' The lowest values are suitable for alpine landscapes. This 
form of the amplitude spectrum tends to generate self-similar curves. In 
figure 13.4 we have shown an amplitude spectrum with the spatial frequency 
scaled so that the maximum frequency considered is 1. 
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FIGURE 13.5: The real and imaginary parts of Z as functions of position 
x for /0 = 0.004, a = 1.1 and j3 = 1.1. 

In order to obtain height as a function of distance we perform a com­
plex Fourier-transform: 

Z(x) = Le!; exp(27ri/j x) . 
j 

We have used the standard fast Fourier-transform algorithm to evaluate 
Z. The resulting surface profile has real and imaginary parts: z' = ~Z 
and Zll = ~Z, as shown in figure 13.5. The irregular fluctuations of z' and 
z" are caused by the discrete nature of the frequency spectrum, which has 
irrationally related components. 

We generate real translation surfaces from the profile Z by forming 
the expression 

z(x, y 11f;) = z' cos 1f; + z"sin 1f;, 

where 1f; is an angle chosen at random in the range 0-211'. The resulting 
curve z(x,O 11f; = 0.616) is shown in figure 13.6 
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FIGURE 13.6: The profile Z(X,O I'I/J = 0.616). 
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By the addition of a few such randomly oriented layers we generate a 
landscape. In order to enhance the structure of the landscape we fill water 
to some level and view it from a height we choose. Figure 13.7 results from 
the superposition of 12 layers of height profiles z(x, y I'I/J, ¢), with random 
phase angles 'I/J and rotated a random angle ¢. For figure 13.7 we used a 
resolution of 1024 points, corresponding to unit distance in both the x- and 
y-directions. However, we have displayed only a central portion of 64 x 64 
grid points in the x, y-plane. The picture is generated by drawing 64 height 
profiles of the form 2(x, Yi) with i = 1,2, ... ,64, and in such a way that 
the pen is lifted if the next point is hidden by a contour already drawn. 

The resolution in the previous figure is clearly too crude, and in the 
following pictures we have used a grid of 256 x 256 points in the x, y-plane, 
taken from the middle portion of the 1024-point Fourier-transformed z­
curves. We find that 30 height profiles perpendicular to the line of sight, 
with sections in front hiding later sections, give reasonable results. In the 
regions filled with water we draw all of the 256 profile lines. 

In order to get acceptable landscapes it is necessary to add perspective. 
A simulation of the curvature of the earth is needed in coastal landscapes in 
order to avoid the impression that the landscape is cut off at the horizon. 
An example using these features after the superposition of four layers is 
shown in figure 13.8. The picture might well have been taken in the region 
of granite rocks in southern Norway. The smooth appearance is caused by 
the rather large value of a = 1.4, which causes the frequency spectrum to 
space out rapidly with increasing spatial frequency f. Decreasing the a to 
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FIGURE 13.7: A landscape generated by 12 layers. a = 1.1, f3 = 1.1. 

0.8 gives rise to rather rough landscapes with fractal coastlines as shown 
in figure 13.9. . 

As discussed in the previous section, the superposition of a large num­
ber of nonfractal translation surfaces may well generate manifestly fractal 
surfaces, but the pictures presented so far involve only four layers (12 in 
figure 13.7), and with a > 1 the height profiles z(x, y) are rather smooth. 
These pictures are therefore nonfractal. What the effect of going to the 
limit of infinite spatial resolution (i.e., including infinitely high spatial fre­
quencies) would be has not been studied in detail. 

Weierstrass-Mandelbrot Coastlines 

By changing the definition of the spectrum of allowed frequencies by re­
placing equation (13.3) by 

/j = b /j -1, for j = 1, 2, . .. , 

with fo = 1, we find that Z becomes the Weierstrass-Mandelbrot frac­
tal function in equation (2.14) if we also choose the spectrum amplitude 
exponent to be given by f3 = (2 - D). 

Figure 13.10 shows a fractal landscape for which we have chosen the 
fundamental spatial frequency to be fo = b = 4.7. The amplitude spectrum 
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FIGURE 13.8: Landscape with perspective and curvature; a = 1.4 , f3 = 1.1. 

exponent chosen is f3 = 0.59. The landscape is quite irregular and the 
fractal dimension for the coastline shown is found to be D ~ 1.35. This 
should be compared to the expected fractal dimension for the Weierstrass­
Mandelbrot curves given by f3 = (2 - D), which here is D = 1.405 - an 
acceptable agreement considering the resolution used. 

13.4 Random Addition Surfaces 

The successive random addition algorithm introduced by Voss (1985b) was 
discussed in section 9.8, where it was used to generate fractional Brownian 
motion. The algorithm is, however, easily extended to higher dimensions 
as discussed by Voss. The landscapes shown in figure 13.11 were generated 
with this algorithm. We started by specifying the altitude Z = 0, on the 
four corners of the 1025 x 1025 lattice. The program uses a subroutine 
to generate ah independent Gaussian variable e with zero mean and unit 
variance. In the first generation we simply generate one value for e and 
use it as the level at the central point (at 513,513) of the lattice. In the 
next generation we first interpolate to find the elevation at the four points 
(~, ~), (~, i), (i, ~) and (~, ~), using units for which the side of the lattice 
is set to 1. For example, the altitude at (~, ~), is Z(i, i) = ~(Z(O, 0) + 
Z(~,O) + Z(~,~) + Z(O, ~)), i.e., the interpolated altitude is simply the 
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FIGURE 13.9: Fractal landscape with coastline map. a = 0.8, f3 = 2.0. 
Coastline fractal dimension D = 1.15. 
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FIGURE 13.10: Weierstrass-Mandelbrot landscape. f3 
Coastline fractal dimension D = 1.35. 

0.59, b 
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4.7. 
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average of the altitude of the diagonal neighbors. The altitudes for the two 
neighbors on the rim [at (0, ~) and (~, 0)] are taken to be the average of 
the altitudes of the corresponding corners of the rim. At this stage of the 
process we have specified the interpolated altitudes at thirteen positions, 
the five original locations, four new ones inside the region and four new 
positions on the rim. The next step is to use thirteen independent values 
of en=l, which are added to the elevations we have. The Gaussian random 
variable now has the variance (with n = 1) given by 

(e~) = O"~ = r2nH , with r = 1/..;2 . (13.5) 

This is the same relation used in section 9.8, but with a scaling factor 
r = 1/-/2, which is the change in distance between the old and new points 
here. This procedure is continued, adding in the next generation the points 
at (~, ~), (~, ~), (~,~) and (~, ~). The altitudes at these locations are ob­
tained as the average of the nearest-neighbor locations, i.e., the neighbors 
in directions parallel to the axes. Sites on the rim are again treated sepa­
rately. In each generation this algorithm doubles the number of positions 
at which the altitudes are specified, and reduces the distance between the 
points by a factor r = 1/../2. The landscapes in figure 13.11 were obtained 
using 18 generations of this algorithm. The landscapes were generated us­
ing the same random numbers and therefore the three landscapes differ 
only in the value of the Hurst exponent chosen. 

Sites on the rim are treated differently from the sites that are gener­
ated inside the region. The result of this boundary condition is that the 
landscapes are fractal, with a fractal dimension D = 3 - H, only on scales 
small compared with the dimension of the lattice. 

The surfaces generated by this process are self-affine when all the 
points are treated on an equal footing. The x- and y-directions are different 
from the vertical z-direction, and therefore one has to distinguish between 
local and global fractal dimensions as discussed in chapter 10. A horizon­
tal section of this self-affine surface defines coastlines like that shown in 
figure 13.12, which are self-similar fractals with a fractal dimension given 
by D = 2 - H, where H is the exponent used in the generation of the 
landscapes. 

The fractal landscapes have a great deal of complexity and the graphics 
determine to a large extent how these landscapes are perceived and inter­
preted. For example, in figure 13.13, we also show the H = 0.7 landscape 
as seen from above and in a form that reminds one of clouds. Consider 
clouds that are large in horizontal extent and viewed from below. The 
formation of water droplets is a critical process and droplets are formed 
only when the water vapor supersaturation is above a certain level. If the 



FIGURE 13.11: Fractal landscapes generated using Voss's successive ran­
dom addition algorithm. The landscapes were generated on a 1025 x 1025 
square grid. The variance of the additions was q2 = (1/-I2)2nH in the n-th 
generation for 18 generations. The Hurst exponents used were H = 0.5, 
0.7 and 0.9, in the top, middle and bottom figures, respectively (Boger et 
al., 1987). 
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·0 

FIGURE 13.12: The coastline of the H = 0.7 landscape shown in 
figure 13.11. The coastline is self-similar with a fractal dimension 
D = 2 - H = 1.3 (Boger et al., 1987). 

altitude of the landscape represents the determining factor for droplet for­
mation (some combination of such factors as temperature and humidity), 
then we expect droplets only when the altitude is above a certain level. 
The clouds in figure 13.13 were made using a black background up to some 
level in the landscape, and from there on we used a gray scale from black 
to white proportional to the logarithm of the altitude. We find that the 
resulting pictures capture much of the texture and structure of clouds. 
For color versions of such cloud pictures see the insert following the Con­
tents. Such clouds cannot, however, be incorporated into the pictures of 
landscapes since they are two-dimensional. Voss (1985b) has generated 
three-dimensional clouds that cast shadows and may be used to generate 
realistic scenes. 

A close inspection of the landscapes shown in figure 13.11 shows that 
the algorithm used tends to produce rather sharp peaks. This is a feature 
of the algorithm that would be wiped out only after a very large number of 
generations. In the color plates following the Contents we also show land­
scapes generated using an algorithm in which the length scale is changed 
by a factor r = 1/2 in each generation. Starting with the altitudes at the 
four corners of the rim we interpolate these altitudes at the four positions 
(~, ~), (~, ~), (~,~) and (~, ~). We then give random additions as before, 
interpolate again and so on. This algorithm has been used by Voss (1985b) 
and has also been discussed by Miller (1986). Landscapes generated using 
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FIGURE 13.13: Fractal landscape with H = 0.7. The top figure is the 
landscape shown in figure 13.11 seen from above. The bottom figure renders 
this landscape as 'clouds.' The altitudes below sea level (see figure 13.12) 
are black. The gray scale used is proportional to the logarithm of the 
altitude above sea level. For a color version of the cloud see the insert 
following the Contents (Boger et aI., 1987). 
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this algorithm have a different lacunarity and are quite satisfactory. As r is 
decreased the lacunarity of the landscape is increased and fewer fluctuation 
scales are visible. 

13.5 Comments on Fractal Landscapes 

Every landscape we have described may be considered to be generated by 
a simple process, which is controlled by the parameters a and p, p and b 
or rand H. To the extent that the reader finds the drawings acceptable 
as sketches of natural landscapes, this way of generating landscapes must 
be useful in the characterization of real landscapes. Clearly the graphics 
should be improved. 

Landscapes of the type generated contain, of course, no information 
on the processes involved in the formation of the landscapes. However, 
they represent a very simple algorithmic description of landscapes. To 
describe an ellipse we need two numbers, and here to define a landscape 
we need three: a, f3 and the number of layers, or r, H and the number of 
generations. More complicated landscape geometries are easily generated. 
We might tilt the whole landscape to generate a coastal region, or we could 
add layers with different characteristics. 

It is tempting to consider models in which a generated landscape is 
eroded or otherwise modified. However, at present we believe that the most 
important aspect of fr ad al landscapes is that they in fact are easy to spec­
ify and that they serve as simple geometrical tools for the description of 
complicated surfaces. Note that Voss's algorithm has the advantage that 
certain elevations (such as the rim) may be fixed in advance. Thus one 
may use his algorithm to perform conditional simulations in which infor­
mation on the elevations at some locations is given. The 'landscapes' could 
also represent concentrations, temperatures or other quantities distributed 
over a surface. In fact, a nice example is provided by Hewett (1986), who 
used this method to generate distributions of porosity in a region, based 
on the information from a few well logs (see figure 8.11). Voss's algorithm 
has the further advantage that it can be iterated to any desired resolu­
tion. This method merges the simulation of landscapes with the analysis 
of observations - a most promising approach. 



Chapter 14 

Observations of Fractal Surfaces 

In recent years many studies of the fractal structure of surfaces have ap­
peared in the literature. Everything from protein surfaces to airport run­
ways has been claimed to be fractal. The observations discussed use the 
full array of tools known to chemistry and physics. Generally speaking 
the observed fractal behavior does not cover many orders of magnitude in 
length scales, and the validity of the determined fractal dimensions may be 
questioned. Nevertheless, a very interesting set of observations have been 
analyzed and we discuss some of the recent results here. 

14.1 Observed Surface Topography 

Sayles and Thomas (1978a) have discussed and measured the surface rough­
ness of objects ranging from supertanker hulls and concrete runways to hip 
joints and honed bearing raceways. 

The height z of a surface is measured as a function of the distance z 
along some direction. With a large number of measurements all over the 
surface available, one may calculate the surface roughness as given by the 
varIance 

Here ( ... ) is the average over the set of observations or repeated observa­
tions of surface topography. The reference point in the vertical direction is 
chosen so that (z(z)) = o. 

An important measure of the surface statistics is the correlation func­
tion defined by 

C(~z) = (z(z + ~z)z(z)). 

229 
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For stationary surfaces the correlation function may be expressed in terms 
of the power spectral density G(/) by a Fourier transform : 

I tX> 
C(Ax) = "2 i-oo G(/) exp(27ril Ax)dl . 

The spatial frequency I is related to the wavelength A of the undulations 
on the surface by I = 1/ A. Physical systems have a finite extent Lmax , and 
therefore a minimum spatial frequency I min = 1/ Lmax. Therefore we may 
rewrite the correlation function in the form 

C(Ax) = 100 GU) exp(27ril Ax )dl . 
fmin 

Sayles and Thomas assume the following form for the power spectral 
density: 

G(/) = k//2, (14.1) 

and call the constant k the 'topethesy.' With this assumption the variance 
is given by 

u2 = (z(x)2) = 100 
G(/)df = k//min , 

fmin 

i.e., we have u 2 = k Lo, and the variance increases with the size of the 
surface as expected for Gaussian random processes. 

In figure 14.1 we have reproduced their results. They have plotted 
y = log(iG(1/A» versus x = log(A). From equation (14.1) one expects a 
straight line with slope 2. They obtain a remarkable data collapse for 23 
types of surfaces spanning 8 decades in surface wavelength. They suggest 
that the 'topethesy' k uniquely defines the statistical geometry of the ran­
dom components of an isotropic surface for any given range of wavelength! 

However, it should be noted that fitting the spectral density equa­
tion (14.1) to observations determines k, and by the scaling used this equa­
tion becomes G(l/ A)/k = A2. As pointed out by Berry and Hannay (1978), 
this amounts to taking raw data consisting of 23 short line segments with 
varying slopes scattered allover the log-log plot and translating them each 
along the vertical y-axis so that the segment lies as closely as possible to 
the line y = 2x. This procedure is guaranteed to yield a better-looking fit 
as the total range covered by the data increases. 

Berry and Hannay (1978) comment that statistically isotropic surfaces 
which have no scale and whose height is well defined but non differentiable 
may indeed have spectra of the lractal form 

(14.2) 
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FIGURE 14.1: Scaled surface spectral power iG(l/A) versus surface height 
wavelength A for different systems (Sayles and Thomas, 1978a). 
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FIGURE 14.2: Histogram for the exponent a for the 23 sets of data in the 
previous figure (Sayles and Thomas, 1978b). 

As discussed by Mandelbrot (1982, p. 353) the exponent H appearing 
here is the fractal co dimension and is given in terms of the surface fractal 
dimension D by 

D=3-H. 

For Brownian surfaces - that is for ordinary Gaussian statistics - the 
equation (14.1) assumed by Sayles and Thomas is obtained since H = 
1/2 and D = 2.5 for such surfaces. However, the parameter a must be 
considered a parameter of the fit, and it is found to be in the range 1.07 to 
3.03, corresponding to a fractal dimension D = (7-a)/2 in the range 2 to 3. 
Sayles and Thomas (1978b) respond by refitting their data and presenting 
a plot of the obtained estimates of the spectrum parameter a as shown in 
figure 14.2. The values for a obtained cluster around the Gaussian value 
of 2, but cover the permissible range 1 to 3. We find this reasonable since 
we hardly expect the statistical properties of ball bearings and runways to 
be the same. Nevertheless, the analysis of Sayles and Thomas is interesting 
and its limitations should be tested critically on high-quality data. 

Fractal Fracture Surfaces 

'Vhen a piece of metal is fractured the fracture surface that is formed is 
rough and irregular. Mandelbrot et al. (1984) investigated the fractal 
structure of such surfaces. They studied fractured samples of 300-Grade 
Maraging steel samples by plating the fracture surfaces with nickel. The 
specimens were polished parallel to the plane of the fracture. 'Islands' of 
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FIGURE 14.3: The perimeter-area relation for the fracture surface of 
300-Grade Maraging steel. The line is a fit of A ~ L 2/ D ' with D' = 1.28 
(Mandelbrot et al., 1984). 

steel surrounded by nickel appeared which, on subsequent polishing, grew 
and merged. The 'coastlines' or perimeter P and the area A of these islands 
were measured using a ruler or 'yardstick' 6 = 1.5625 I'm. 

Fractal surfaces such as the fracture surfaces must scale differently in 
the plane of the fracture and in the direction perpendicular to the surface. 
Therefore a fracture surface is at best self-affine with a local fractal dimen­
sion D. However, the intersection of such a self-affine surface by a plane 
gives rise to coastlines which are indeed self-similar and have a fractal di­
mension D' = D - 1 (Mandelbrot, 1985; Voss, 1985a). Therefore we may 
use the perimeter-area relation (12.2) in the form 

L(6) ~ VA(6) 
D' 

(14.3) 

In figure 14.3, we show the results obtained by Mandelbrot et al. 
(1984). A fit of equation (14.3) gives D' = 1.28, which implies that the 
fracture surface itself has a fractal dimension of D = 2.28, over a consid­
erable range of length scales. Mandelbrot et al. also tested the fractal 
structure using a profile analysis. The fractured surface was sectioned to 
expose its profile and they determined the power spectral density G(f) for 
the measured profiles. Using equation (14.2) H was determined and then 
they found the fractal dimension D of the surface by the relation 

D = 3 - H == 1.26 , 

which is in good agreement with the previously determined value. 
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FIG URE 14.4: The relation between the observed surface fractal dimension 
D and the impact energy required to fracture a series of 300-Grade Marag­
ing steel samples heat-treated at various temperatures (Mandelbrot et aI., 
1984). 

Mandelbrot et al., in another interesting series of experiments, heat 
treated identical specimens of 300-Grade Maraging steel at different tem­
peratures. They measured the impact energies required to fracture the 
samples and determined the surface fractal dimensions. In figure 14.4 we 
show their results. It is clear that the fractal dimensions, measured to be 
in the range D = 2.1 - 2.28, are approximately a linear function of the 
impact energy. The metallurgical basis for this relation is not under­
stood, but after the discovery of the relation between the fracture energy 
and the fracture fractal dimension one at least has a handle on the surface 
topography. 

14.2 D for Landscapes and Environmental 
Data 

Burrough (1981) has analyzed a large number of environmental data and 
has obtained estimates of fractal dimensions for diverse properties as shown 
in figure 14.5. The various properties discussed are considered to be series 
of values z, sampled at regularly spaced positions x. The random function 
z( x) corresponds to a set of points in the x, z-plane with a fractal dimension 
in the range 0 < D < 2. The variance of increments defined by 

V(L\x) = ([z(x + L\x) - Z(x)]2) 
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Property La, D I$la,"O 

Soil-sodium content 1S.2m 1.7-1.9* 
-stone content ts.2m 1.1-1.8* 

(both over four directions) 
20m 1.6-Soil-thiekness of cover loam 

Soil-elec:tric:al resistivity (4 directions) 1m 1.4-1.6-
Surface of airport runway 30 em 1.St 
Soil- mean cone index -lkm 1.9* 

-silt -t clay in 0-15 cm layer -1 km 1.8t 
-mean diameter of surface stones -lkm 1.8i 
-coarse sand fraction in O-IS em layer -Ikm 1.8i 

Ve.etation cover -I km 1.6* 
Gold Various 1.9* 
Soil-phosphorus level Sm 2.0* 

-pH Sm 1.Si 
-potallium level Sm 1.6* 
-bull( density Sm 1.Si 
-0.1 bar water Sm 1.Si 

Iron ore in rocks 
1.6---chlorite 15 tLII' 

~uartz IS .,.m 1.9-
-quartz Scm 1.6* 
-iron Scm 1.S* 
-iron (E-WI 100m 1.7* 
-iron (N-SI 100m 1.S* 
-iron tE-WI SOOm 1.6* 
-iron (1'-51 SOOm 1.9-

Sea anemones 10cm 1.6§ 
Rainfall 1 km 1.7* 
Iron ore 3m 1.4* 
Groundwater levels 
Piezometer 1 1 day 1.6* 

2 1 day 1.7· 
3 1 da)' 1.8* 
4 1 day 1.3* 

Oilarades 60cm 1.7* 
Copper ,rades 2m 1.7· 
Topo(2raphic heights 10m 1.S· 
Snil-50and content 10m 1.6-1.8* 

-pH 10m 2.0" 
Crop )0 ieldl> 1-1.000 m 1.6-1.8; 
Water tatllt: depth 250m 1.6-

FIGURE 14.5: Estimated D for various environmental series. For an expla­
nation of the symbols see the text (Burrough, 1981). 

has a position dependence given by V(ax) '" I ax 12H , as discussed by 
Mandelbrot (1982, p. 353). Therefore the fractal dimension D = 2-H may 
be estimated from a log-log plot of the variance of increments. This method 
has been used for the entries marked * in figure 14.5. The power spectrum 
is given by equation (14.2), and the fractal dimension is again obtained 
from an estimate of the codimension H, by D = 2 - H; the resulting 
estimates are marked t. Related estimates involving block variances are 
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marked with t, and estimates based on covariances are marked §. 

The values for D reported fall in the range 1.4 to 2.0. The high val­
ues of D reported in the table for some soil and geological data seem to 
question the wisdom of interpolating mapping in certain instances, and it 
would seem worthwhile to use D as a guide to how further mapping and 
interpolation should proceed. We find this analysis interesting but in order 
to assess its validity one has to examine critically the original data, and in 
particular one must find the range over which there is no length scale. In 
fact experience from research on phase transitions for which scale invari­
ance is well documented and understood indicates that reliable estimates 
of exponents can only be obtained when the data extend over at least three 
decades - this stringent criterion has not been met so far in the discussion 
of fractal surfaces or in the environmental data. 

14.3 Molecular Fractal Surfaces 

Surfaces may be rough and even fractal down to the molecular size range. 
The area of surfaces may be measured - in the spirit of the Hausdorff­
Besicovitch definition - by adsorbing molecules of different size on the 
surface and 'counting' their number. Surface areas are usually determined 
by measuring adsorption isotherms. One measures the number of moles 
n of the molecules that are adsorbed on the surface as a function of the 
pressure P at a given temperature T: 

n = fT(P) . 

One method for the determination of n makes use of pressure.-volume mea­
surements to determine the amount of gas before and after exposure to the 
adsorbent. A second general type of procedure is to determine n by a direct 
weighing of the amount of adsorption. For the adsorption of molecules from 
solution many special techniques are used. For a good general discussion 
of surface adsorption see Adamson (1982). 

The Langmuir isotherm, often used in the interpretation of adsorption 
isotherms, has the form 

(14.4) 

Here nm denotes the number of moles adsorbed at the monolayer point. 
From such isotherms the nm is determined. The surface area ~ is given by 

~ = n m NA (7o , 

where (70 is the area occupied by an adsorbed molecule, and NA is Avo­
gadro's number. For many substances the adsorption area is well known 
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FIGURE 14.6: Measured monolayer mole numbers n on porous silica gel as 
a function of molecule cross-section u (.A?). D = 3.02 ± 0.06 (Pfeifer et al., 
1984). 

and to a large extent independent of the substrate. In many practical ap­
plications nitrogen is used, and the accepted value of the area per site is 
Uo = 16.2 A 2 . Another widely used method used to interpret adsorption 
isotherms has been introduced by Brunauer et al. (1938): the so-called 
BET isotherm, which is useful for more complicated adsorption isotherms. 

Observation of Molecular Fractal Surfaces 

In a series of papers Avnir, Pfeifer and Farin (Avnir et al., 1983, 1984; 
Avnir and Pfeifer, 1983; Pfeifer and Avnir, 1983; Pfeifer et al., 1983, 1984) 
have discussed the surface areas determined by adsorption isotherms and 
concluded that many substances are fractal and characterized by a surface 
fractal dimension in the range 2 < D < 3. The specific surface of the 
sample depends on the size of the molecules used. They note that with a 
length scale 6 given in terms of the adsorption area 

the amount adsorbed on a sample with a fractal surface must have the form 

(14.5) 
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FIGURE 14.7: Measured monolayer mole numbers n of tertiary amyl alcohol 
as a function of adsorbent particle diameter (2R) (Jlm) (Pfeifer et al., 1984). 

consistent with equations (2.3) and (2.4). As an example of this type of 
behavior consider figure 14.6, which shows the results obtained by Pfeifer 
et al. (1984) for the adsorption of spherical alcohols from toluene on porous 
silica gel. The mole numbers observed follow the relation (14.5) with D = 
3.02 ± 0.06 over the yardstick range 0'0 = 18 to 35 A2 or 6 in the range 4.2 
to 5.9 A. This is an extreme value of the fractal dimension of a surface. 
The surface is so crumpled and porous that it practically fills the volume. 
It follows that in thermodynamic terms the surface terms contribute as 
much as the volume terms. A monolayer of adsorbed molecules in this 
system amounts to a bulk phase interrupted by an increasing number of ever 
smaller voids. This remarkably high value for the surface fractal dimension 
should be investigated over a larger range of yardsticks. 

Recently Rojanski et al. (1986) investigated mesoporous silica gel by 
adsorption, electronic energy transfer and small-angle X-ray scattering. All 
these different methods gave the result that the surface is extremely rough 
and irregular, with a fractal dimension D ~ 3. 

Pfeifer and Avnir (1983) have introduced a method that permits a large 
extension of the effective yardstick range. Consider geometrically similar 
particles. Let R be the radius of the smallest sphere needed to enclose 
such a particle. Then by the same arguments used for the derivation of the 
perimeter-area relation (12.2) we obtain the area-volume relation 

(14.6) 
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Here the particle volume V is given by V ,..." R3. For a given sample volume 
Vs > > V, filled with the adsorbent, the number of particles N s in the 
sample will increase with decreasing radius of the particles as N s ,..." R-3. 
Combining this with equation (14.6) it follows that the surface area:E -
with a fixed yardstick 6 - will change with the radius of the particles as 

~ RD - 3 
~"""n""" . (14.7) 

The monolayer mole number n measured for molecules of a given size is 
proportional to :E as indicated. With this method of analysis Pfeifer and 
Avnir have extended the range of the results in figure 14.6 as shown in 
figure 14.7. Thus effectively they have obtained D = 3.04 ± 0.05 over the 
yardstick range 35 to 256 A 2 • 

A collection of fractal dimensions determined by Avnir et al. (1984) 
is shown in figure 14.8, which is reproduced from their paper. This is a 
remarkable list of surface fractal dimensions ranging from D = 2 all the 
way to D = 3. Clearly these results warrant further research. In particular, 
the range over which the surface structure is measured should be extended 
into the regions where both the lower- and the high-end cutoff scales are 
reached. Again, experience from the work on phase transitions has shown 
that exponents determined from data that do not extend over at least three 
decades are unreliable. 

We expect that the realization that molecular fractal surfaces exist 
will have a significant impact on many fields that relate to surfaces, such 
as catalysis, wetting and powder technology. This will certainly become a 
very active field of research. 

Porosity with Fractal Properties 

In a very interesting paper Bale and Schmidt (1984) proposed that micro­
scopic porosity may be fractal. They gave a derivation of an expression .for 
the X-ray scattering intensity from fractal pore surfaces, 

S(q) ,..." q(D-6) , (14.8) 

where the scattering vector q is given by the same expression as in equa­
tion (3.4). From observations of small-angle scattering in Beulah lignite 
coal, they concluded that the pore space surface is fractal and has the frac­
tal dimension D = 2.56 ± 0.03 over almost two orders of magnitude in the 
scattering vector (figure 14.9). Clearly more small-angle scattering work 
is needed in order to obtain better insight into the fractal properties of 
porous systems. 
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Hill! 
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2.78::t0.21 Chan:oaJ (BOH) of animal oriIiD 1,400-180,000 
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2.'2::t0.07 Coal mine dust from 1~lao 
Wcstem PenasylYaJlia 

2.33::t0.oa Coal mine dust from 1~270 
Western Penasylvania 

2.25::t0.09 Carbon blaclt (l~71) 

2.54::t0.12 SliPtJy porous c:oc:oaut cbarcoaJ (l~7) 

(Standard Chemical Co., Montreal) 
2.3O::t0.07 SliPtIy porous c:oc:oaut cbarcoaJ (l~7) 
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2.46::t0.ll Glassy melted rock from Rainier nuclear zone, 14-14,300 
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FIGURE 14.8: Fractal dimensions of surfaces measured by molecular ad­
sorption (Avnir et al., 1984). 
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FIGURE 14.9: X-ray scattering intensity as a function of angle for Beulah 
lignite (Bale and Schmidt, 1984). 

Wong (1985) discussed the theory of small-angle scattering and pointed 
out that these data should be interpreted as evidence of rough pore surfaces 
which are not fractals. Wong et al. (1986), using small-angle neutron 
scattering, found that sandstones and shale have fractal internal surfaces 
with D in the range 2.55 to 2.96 depending on the type of rock investigated. 
They identified clay as the origin of such structures. 

Katz and Thompson (1985) investigated porous sandstones using a 
scanning electron microscope. They measured fractal parameters on rock 
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FIGURE 14.10: The number N(L) of geometric features of size L per unit 
length versus the size L (cm) for Coconino sandstone (Katz and Thompson, 
1985). 

fracture surfaces utilizing the secondary-electron emission from the scan­
ning electron beam. At each magnification the structure detected by the 
electron beam along a linear trace is limited by the microscope resolution; 
for an isotropic fractal this limits the depth of field. The scanning electron 
microscope depth of field decreases at increasing magnification such that it 
is always smaller than the depth of the rock interface. Therefore in effect 
the intensity of the secondary-emission electrons has features that come 
from the intersection of a line with the pore space-matrix interface. For 
a volume fractal with a surface fractal dimension D, the intersection with 
a line is a set of points with dimension D' = D - 2. Katz and Thomp­
son hypothesized that, at a given magnification, the number of 'features' 
N(L) per unit length resolved at a given magnification as a function of the 
length scale L should satisfy the relation N(L) -- L-(D-2). As shown in 
figure 14.10 their observations are nicely fitted by this form and the fractal 
dimension estimated is D = 2.78. In table 14.1 we give their results for . . 
varlous speclmens. 

The fractal structure of the pore space has a lower cutoff 11 -- 20 A 
and an upper cutoff 12 above which the power-law dependence on L no 
longer holds. Katz and Thompson proposed the following relation for the 
porosity ¢: 

(14.9) 
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Fractal Porosity (%) 
Sample dimension 12 (",m) Calculated Measured 

Tight gas sand 
#965 2.57 2.5 4.7 5.3-5.6 

Tight gas sand 
#466 2.68 6 7.6 6.9-7.6 

Coconino 2.78 98 10 11-12.5 

Navajo 2.81 50 15 16.4 

St. Peter's 2.87 50 27 24-28 

TABLE 14.1: The fractal dimension of the pore surface measured using 
secondary-electron emission from sand and sandstones. The porosities 
have been measured, and the calculated values have been estimated us­
ing ¢ = (lI!12)3-D (Katz and Thompson, 1985). 

They have used this relation to estimate ¢ from the observed upper length 
scale /2, and find a satisfactory agreement. However, they give no argu­
ment for their postulated relation, which cannot hold in general. Recently 
this point has been criticized by Roberts (1986), and Katz and Thompson 
(1986) have answered. Again more research is needed. 
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and random walk, 163-170 
self-similar front, 142 
three-dimensional, 146-148 
turbulent,S, 205 

Diffusion-limited aggregation, 
33-34,41,53-56,67, 
92-95 

Diffusivity anomalous, 177 
Dimension 

box counting-, 15, 99, 185-189, 
196 

cluster-, 31, 64 
cluster fractal-, 33-34 
critical-, 14, 65, 80, 85 
D fractal-, 11, 14, 31 
D Hausdorff-Besicovitch-, 11, 

14, 63-65 
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Dimension (continued) 
divider-, 188-189 
entropy-, 78-79, 89 
Euclidean-,ll, 34, 89, 121 
global fractal, 188, 197, 215, 

224 
information-, 94 
latent fractal, 188 
local fractal, 14, 188, 197, 

215, 224, 233 
mass, 31,63 
similarity-, 19, 21-22, 62-63, 

65, 184 
spectrum of fractal-, 87-89, 

94 
table of fractal-, 189 
topological, 11, 17, 63 

Dimension of 
backbone, 130 
clouds, 202, 205 
external perimeter, 145 
hull fractal, 142, 145 
invasion percolation cluster, 

135 
percolation cluster, 111 
rivers, 208 
viscous fingering, 49 

Displacement 
experiment, 45-61, 94, 

96-103, 126-128, 133, 
136-139, 145-146 

on backbone, 126 
Dissipation 

energy, 66 
field, 76 

Dissolution chemical, 53 
Distance 

i diffusion, 140 
Euclidean, 130 

Distribution, 70 
binomial, 155 
for step length probability, 

165 
fractal-, 4 
gamma, 198 
Gaussian, 155, 164, 169 
Gaussian probability, 164, 169 
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Distribution (continued) 
global pressure, 52 
hyperbolic, 198, 208 
invariant in, 168 
joint probability, 167 
Korcak, 216 
log-normal, 198 
normal, 164, 180 
scaling of size-, 124 
power-law, 117 
skewed, 198 
uniform, 32 

Distribution of 
cluster size, 36, 117, 120-122 
current, 67, 130 
energy, 66 
errors, 66 
mass, 68 
pore size, 52 
population, 70 
porosity, 161-162, 228 
pressure, 52 96 
size, 52, 216 

Divider, 6, 188-189 
DLA 

cluster, 33, 92-95 
definition, 33 
dynamic, 55 
model modified, 55 
simulation, 33-34, 55-56, 93 
three-dimensional, 35 
viscous fingering and, 53-56 

d-measure, 14, 17,63,65, 73, 85 
definition of, 14 

Dragon Harter-Heightway, 21 
Drainage area, 5, 161, 208-211 
Drying front, 145-146 
Dust 

Cantor, 63 
fractal, 98 

Dynamic 
DLA, 55 
percolation process, 131 

Dynamical system, 5 
Dynamics 

of viscous fingering, 49-52, 
96, 103 

SUBJECT INDEX 

Economics, 2 
Einstein relation, 54, 139, 163-164, 

177 
Electric charge, 69 
Electrical conductivity, 177 
Electrodeposition, 35, 55 
Electrostatics, 42, 95 
l diffusion distance, 140 
Empirical law Hurst's, 149-154 
Energy 

dissipation, 66, 76 
free, 26, 171 
spectrum, 193 

Entropy, 78-79, 82 
dimension, 79, 89 
information-, 78 
of measure, 82, 84 
of partition, 82, 84, 88 

Environmental data,S, 234 
Epox~ 49, 57, 126 

displaced by air, 49 
Equation 

Darcy's, 42, 51, 54 
diffusion, 54 
homogeneity, 26 
Laplace's, 35, 42, 51-52, 

54-55 
N avier-Stokes, 42 
of continuity, 42 

Errors 
distribution of, 66 
statistics of, 1 

Euclidean 
dimension, 11, 34, 89, 121 
distance, 130 

Exact percolation threshold, 111 
Expansion binary, 72 
Experiment displacement, 45-61, 

94, 96-103, 126-128, 133, 
136-139, 145-146 

Exponent 
a Lipschitz-Holder, 68, 75-76, 

83-84, 95, 100, 153, 208 
a scaling, 68 
a(q) Lipschitz-Holder, 83-84 
apparent Hurst, 159, 195 
B, 216 
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Exponent (continued) 
fJ percolation probability, 

109, 124 
critiC&, 26, 109, 123 
D in number-radius relation, 

33 
f(a), 100 
f(e), 74-75 
H Hurst, 149-162, 169-171, 

177-183, 189, 194-199, 
224, 230 

v, 123-126, 131, 143-145 
of the singularity, 68 
specific heat critic&, 26 
T for size distribution, 121 
T(q) mass, 80-89 

Exponents 
infinite set of, 130 
sequence of mass, 80-89 

Extern& perimeter, 145 
fract& dimension of, 145 

Extreme wave, 198 

f(a) curve 
curve, 76-78, 83-84, 87, 91, 

94 
for convection, 91 
for DLA, 94 
for turbulence, 77 
for viscous fingering, 100-102 

Fingering, and D LA viscous 53-56 
and randomness, 52 
dynamics of viscous, 49-52, 

96, 103 
fract& dimension of viscous, 

49 
in porous media, 56-61 
radi& viscous, 47-52 
structure viscous, 96 
theory of viscous, 41-45 
three-dimensional viscous, 

56-61 
viscous, 4, 41-61, 67, 96-103, 

127-129 
Finite size scaling, 121-126 
Five-spot well pattern, 54, 60 

Fixed-point, 113, 123 
trivial, 113 
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Flow in porous media, 43, 56-61, 
136-139 

potential, 41-42 
turbulent, 41, 66, 77 

Fluctuation 
resistance, 130 
thermal, 163 

Fluid, 104 
anisotropic, 49 
defending, 131-134 
in porous medium, 4,49, 

56-61 
incompressible, 42 
invading, 131-134 
non-wetting, 132 
trapped, 126, 132 
wetting, 132 

Force capillary, 43, 45, 51, 131-132 
viscous, 45, 131 

Formula Stirling's, 74 
Four-dimension& 

self-affine cloud, 183, 206 
space, 206 

Fourier amplitude, 217 
transform, 217, 219, 230 

Fract& 
aggregate, 67 
Brownian coastline, 215 
Brownian function, 172-178, 

180-182, 185-186 
Brownian island, 214 
Brownian motion, 4, 149, 

163-170, 177, 194, 215 
cluster, 3, 33-34, 36-40, 

109-112, 
coastline, 6-9, 14-15, 

200-202, 232 
codimension, 206, 215, 232 
curve, 16, 25, 27, 200 
recursively self-affine, 192 
definition of, 2, 11 
diffusion, 177 
diffusion front, 105, 139 
dust, 63, 98 
dynamics, 5 
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Fractal (continued) 
fingering and randomness, 

52 
fracture, 232-234 
function, 27, 185-189 
geometry, 1 
internal surfaces, 241 
Koch surface, 213 
landscape, 2, 3, 5, 214-228 
measure, 4, 14, 66-103, 191, 

208 
measure two-scale, 85-89 
noise, 174, 177-178, 181, 195 
percolation cluster, 23, 105, 

109-131 
random, 4-5, 163 
record, 193, 197 
records in time, 149 
resistor network, 67 
self-affine, 4, 142, 184-189, 

204, 215 
self-similar, 4, 19, 26, 142, 

184-189, 207 
statistics, 4, 198 
subset, 67, 73-75, 83 
surface,S, 181, 212-228, 229, 

236, 239, 241 
surface molecular, 236 
transport phenomena, 177 
viscous fingering, 41, 52, 96 

Fractal dimension D 
dimension, 11-15, 31 
cluster-, 33-34, 36-40, 

109-112 
global, 188, 197, 215, 224 
latent, 188 
local, 14, 188, 197, 215, 224, 

233 
spectrum of, 87-89, 94 
table of, 189 

Fractal dimension of 
backbone, 130 
clouds, 5, 202, 205 
external perimeters, 145 
hull, 142, 145 
invasion percolation, 135 
percolation cluster, 111 

SUBJECT INDEX 

Fractal dimension of (continued) 
perimeter, 202 
rivers, 208 
viscous fingering, 49 

Fractional Brownian 
curve, 180-181 
motion, 4, 149, 156, 160-163, 

172-178, 180-182, 194 
motion R/ S analysis of, 

178-179 
noise, 177 
surface, 215, 232 

Fracture, 104 
analysis of, 232 
fractal, 232 
surface, 232-233 

Free energy, 26, 171 
Frequency 

curve Gaussian, 156, 164 
spatial, 216, 230 
spectrum, 217, 220 

Front 
diffusion, 105, 139 
displacement, 41-61 
drying, 145-146 
fractal diffusion, 139-148 

Function 
correlation, 170, 229-230 
crossover, 49, 117, 121-125 
f(a), 76-78 
fractal, 27-30, 172-178, 

180-182, 185-189 
fractal Brownian, 172-178, 

180-182, 185-186 
gamma, 172 
homogeneous, 26, 117, 123 
nondifferentiable continuous, 

27, 69, 71 191 
power-law, 26 
random, 166, 169-178, 234 
scaling, 26, 49, 121, 124 
self-affine, 185-189 
singular, 77, 189, 191 
test, 14 
Weierstrass-Mandelbrot, 

27-30, 220 



SUBJECT INDEX 

Gambling theory, 189 
Gamma distribution, 198 
Gamma function, 172 
Gasket Sierpinski, 25 
Gaussian 

curve, 156, 164 
noise, 174 
normal frequency curve, 158 
probability distribution, 155, 

164, 169 
random process, 164-170, 

178, 185, 230 
random variable, 164-170, 

221 
statistics, 162, 232 

Generation number n, 17 
Generation of landscapes, 212~228 
Generator, 15, 17, 20-25, 32, 62, 

64,67 
Geometry of 

backbone, 24, 126-131 
natural objects, 1 
percolation fractal, 23, 

104-117 
Global 

fractal dimension, 188, 197, 
215, 224 

pressure distribution, 52, 96 
Glycerol, 45-46, 49, 51-52, 57, 

96-99, 126-128, 136 
Gold 

atoms, 141 
cluster, 37-38 
colloid, 37, 39, 66 

Golden mean, 89, 91 
Gravity, 42, 45, 139 
Grid turbulence, 76 
Growth 

anisotropic, 48 
dendrite, 48 
DLA, 33-34, 53-56, 67, 92-95 
electrolytic, 35, 55 
measure, 67, 96-103 
probability, 97 
sites, 133 
tip splitting, 47-48 
zone, 96 

Gyration radius of, 49, 93, 96, 
98-100, 117-118, 120, 
122-124 

273 

H Hurst exponent, 149-162, 
169-171, 177-183, 189, 
194-199, 224, 230 

Hail cloud, 204-205 
Harmonic measure, 92-95, 103 
Harter-Heightway dragon, 21 
Hausdorff-Besicovitch dimension 

D, 11, 14, 63-65 
Hele-Shaw cell, 35, 41, 44, , 67 

anisotropic, 47-48 
circular, 47, 94 
permeability, 42 
with parallel groves, 47-48 
channel, 44-46 

Holes of all sizes, 112 
Homogeneity 

equation, 26 
relation, 26 

Homogeneous function, 26, 117,. 
123 

Hull, 139, 141-142, 145, 147 
definition of, 141 
fractal dimension of, 142, 145 
of percolation cluster, 139, 

142 
supertanker, 229 

Hurst 
biased process, 158-159 
exponent H, 149-162, 

169-171, 177-183, 189, 
194-199, 224, 230 

exponent apparent, 159, 195 
Hurst's empirical law, 149-154 

rescaled range analysis, 
149-154 

Hydrodynamic instability, 44-45, 
89-92 

Hydrodynamics, 41 
Hyperbolic distribution, 198, 208 
Hypercubic lattice, 121 

Ideal reservoir, 149 
Ideally porous material, 148 
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Immiscible lluids, 131, 137 
Incipient percola.tion cluster, 

104-112, 134-135, 139 
Increments 

correla.tion of, 170-171, 177 
in position, 166-169 
va.ria.nce of, 162, 170, 177, 

180, 234 
Independence sta.tistical, 171 
Independent 

Brownia.n motion, 177 
Ga.ussia.n Brownia.n motion, 

186 
Ga.ussia.n ra.ndom process, 

163-170, 178, 185, 230 
Ga.ussia.n ra.ndom va.ria.ble, 

164-170, 221 
ra.ndom process, 153-154 

Informa.tion 
dimension, 94 
entropy, 78 

Initia.tor, 15, 20, 24-25, 62, 67, 
202, 206 

Insta.bility 
hydrodyna.mic, 44-45, 89-92 
wa.velength of ma.ximum, 45 

Interfa.ce, 43, 132, 135 
lluid-lluid, 43 
sta.bility of, 44-45 
tension, 43-45, 127, 132 
wa.ter-oil, 132 

Internal fra.ctal surfa.ce, 241 
Intersection, 216, 242 

of sets, 206, 233 
Inva.ding fluid, 131-134 
Inva.ria.nt in distribution, 168 
Invasion percola.tion, 52, 105, 

131-139, 145-146 
cluster, 131-139 
fra.ctal dimension of, 135 
with tra.pping, 136-138 
without tra.pping, 134-135, 

137-138 
Ising model, 67 
Isla.nd, 6, 200-202, 214-216 

fra.ctal Brownia.n, 214 
qua.dra.tic Koch, 202 

SUBJECT INDEX 

Isla.nds similar, 200-202 
Isotherm a.dsorption, 236-237 

BET, 237 
La.ngmuir, 236 

Itera.tive ma.p, 3, 91 

Joint proba.bility distribution, 167 

Kinetic dendrite, 48 
Koch 

cluster, 32-33 
construction, 15-17, 22-24 
curve, 15-22 
curve area. under, 202 
curve qua.dra.tic, 19 
curve tria.dic, 15-16, 33, 202, 

206, 213 
isla.nd quadra.tic, 202 
triadic surfa.ce, 212-213 

Korcak distribution, 216 

La.cuna.rity, 63, 119, 183, 228 
of percola.tion cluster, 119 

Lag T, 150 160-161, 194 
La.ke Albert, 150 
La.ndsca.pe 

fra.ctal, 3, 5, 181, 214-228 
models of, 221-228 

La.ngmuir isotherm, 236 
La.pla.ce's equa.tion, 35, 42, 51-55 
La.tent fra.ctal dimension, 188 
La.ttice 

La.w 

cubic, 146-148 
coarse-grained percola.tion, 

112-117, 123 
exa.ct percola.tion threshold in 

tria.ngular, 111 
hypercubic, 121 
quadra.tic, 105-112, 126-136, 

139-146 
tria.ngular, 112-117, 123, 142 

Da.rcy's, 42, 51, 54 
Hurst's empirical, 149-154 
power, 26, 117-118, 121-123, 

126, 131 
scaling, 26, 112, 115, 117, 125 
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Lebesgue measure, 78, 191 
Length 

coastline, 8 
connectedness e, 122-126 
correlation e, 122-126, 142 
of curve, 11-14 
ratio, 18-19, 22, 85, 211 

Length-area relation, 208 
Light scattering, 36-40 
Lipschitz-Holder exponent 

ex, 68, 75-76, 83-84, 95, 100, 
153, 208 

ex{q), 83-84 
Liquid crystal displaced by air, 49 
Local 

fractal dimension, 14, 188, 
197, 215, 224, 233 

noise, 181 
Logarithmic correction, 74 
Log-normal distribution, 198 
Long-run 

correlation, 170 
statistical dependence, 158 

Long-term dependence simulation 
of, 157 

Loop, 22, 93 
Lower cutoff, 184, 239 
Low-frequency noise, 174 

Magnetic 
field, 89 
moment, 66, 69, 109 
phase transition, 109 

Mandelbrot-Given curve, 22-25, 
112, 131 

without branches, 24 
Map circle, 91-92 

iterative, 3, 91-92 
Markov-Gauss random variable, 

174 
Mass 

dimension, 31, 63 
distribution of, 68 
exponent r{q), 80-89 

Mass-size relation, 117 
Material conducting, 23 

ideally porous, 148 

Maximum 
instability wavelength, 45 
wave--height, 193 

Mean golden, 89, 91 
Measure 
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binomial multiplicative, 70-73 
concentrate of, 78-79, 82, 84 
entropy of, 82, 84 
fractal, 4, 14, 66-103, 191, 

208 
harmonic, 92-95, 103 
Lebesgue, 78, 191 
multifractal, 66-103, 208 
multiplicative, 70-73 
new-growth, 96-103 
probability, 90-92, 191 
robust, 193 
singularity of the, 76 
support of, 77, 79, 82-85, 92, 

100, 103, 130 
two-scale fractal, 85-89 
uniform, 89 

Mercury, 89, 126 
Micrographs analysis of, 37, 241 
Mobility, 42 

ratio, 55, 57, 60 
Model dielectric breakdown, 35, 48 

for rain fields, 207 
Ising, 67 
modified D LA, 55 
of percolation cluster, 23 
percolation cluster physical, 

126 
porous, 49-51, 56-61, 96 
two-dimensional porous, 

49-51 
Modeling fractal surface, 214-228 
Models oflandscapes, 214-228 
Modified 

DLA model, 55 
triangle sweep, 22 

Molecular fractal surface, 236 
Moment 

magnetic, 66, 69, 109 
order q, 80, 85 

Monomer, 31, 37 
Monte Carlo simulation, 154 
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Motion Brownian, 163-170, 177, 
194, 215 

fractal Brownian, 4, 149, 156, 
160-163, 172-178, 
180-182, 194 

independent Gaussian 
Brownian, 185-187 

R/ S analysis of fractional 
Brownian, 178-179 

simulation of fractional 
Brownian, 173-178 

Mud sediment, 152 
Multifractal, 1, 5 

measure, 66-103 208 
spectrum, 76-78 
thermodynamic formulation 

of, 67 
Multiplicative 

binomial process, 70-75, 
85-89 

measure, 70-73, 85-89 
process, 70-79, 80-89, 190 

n generation number, 17 
N avier-Stokes equation, 42 
Nematic liquid crystal, 49 
Network, 126 

fractal, 67, 130 
of pores, 132 
resistor, 67, 130 

Neutron scattering, 37, 39-40, 241 
New-growth measure, 96-103 
Noise,S, 27, 155, 159 

fractal, 174,177-178, 181, 195 
Gaussian, 174 
local, 181 
low-frequency, 174 
simulated, 178 
white, 174, 178 

N ondifferentiable continuous 
function, 27, 69, 71, 191 

Non-Gaussian statistics, 194 
Nonlinear resistor, 130 
Nonlocal, 134 
Non-Newtonian, 47 
Nonwetting fluid, 132 
Normal distribution, 164, 180 

SUBJECT INDEX 

Normalized wave-height, 195 
Norway coastline of, 6 
"exponent, 123-126, 131, 143-145 
Number 

biased random, 158 
Ca capillary, 45, 47-49, 52, 

55, 96, 131 
density, 31, 89 
n generation, 17 
random, 132-135, 154-155, 

157-158, 169, 224 
Reynolds, 41 
winding, 90-92 

Number-area relation, 216 
Number-radius relation, 31-33, 49 
Numerical simulation, 3, 48, 56, 

92-95, 127-129 

Observed growth measure, 96-103 
Ocean wave-height statistics, 

193-199 
Off-lattice simulation, 33 
Oil, 56-57, 126, 131 

recovery, 41 
residual, 132 
water displacing, 43, 104, 131 

Order 
q moment, 80, 85 
stream, 210 

Packing 
of spheres, 31-32 
random, 32 

Pair connectedness length e, 
122-126 

Particle diffusion, 139 
Partition entropy, 82, 84, 88 
Peano curve, 14, 20-21 
Percolation cluster, 23, 105, 

109-131 
backbone, 126-127, 129 
fractal dimension, 111 
hull, 139, 141-142, 145, 147 
incipient, 104-112 
invasion, 131-139 
lacunarity of, 119 
model of, 23 
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Percola.tion cluster (continued) 
physical model, 126 
self-similar, 112-117 
subset of, 130 

Percola.tion 
exponent /3, 109, 124 
fra.ctal dimension of invasion, 

135 
inva.sion, 52, 104, 131, 133, 

145 
proba.bility definition of Poo , 

108 
process dynamic, 131 
simulta.neous, 147 
site, 105 
theory, 104-148 
threshold definition of, 108 
threshold; exa.ct, 111 
with tra.pping, 136- 137 
without tra.pping, 134-135, 

137-138 
Percola.tor, 104 
Perimeter, 92, 94, 103, 200 

a.ccessible, 145 
cloud, 202 
cluster, 134, 141 
definition of external, 145 
fra.ctal dimension, 202 

Perimeter-area. rela.tion, 200-204, 
233, 238 

Permea.bility, 42 
Hele-Shaw cell, 42 

Persistence, 162, 170-171, 181, 
194-197 

Persistent 
stocha.stic process, 181 
wa.ve-height statistics, 

194-197 
Pertubation wavelength of, 44-45 
Phase transition, 26, 66, 109 

magnetic, 109 
second-order, 26, 109, 122, 

171 
Phenomena 

critical, 25-27 
fra.ctal transport, 177 
transport, 131 
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Physical model percolation cluster, 
126 

Physics of porous media, 41 
Pictures cloud, 207, 227 
Plaster (CaSO.·H20), 53 
Play 

bold, 189-192 
timid, 189 

Point 
critical, 26, 113, 171 
fixed, 113, 123 

Pollen, 163 
Popula.tion, 66, 70, 75 

distribution, 70 
multiplicative, 75 

Pore, 105, 112, 126, 132 
invaded by air, 127 
neck, 52, 132 
size, 52, 132 
size distribution, 52 
surfa.ce, 239 

Porosity, 162 
distribution of, 228 
RIS analysis of, 161-162 

Porous 
material ideally, 148 
media. How in, 43, 56-61, 

126-128, 136-139 
media viscous fingering in, 

56-61 
medium, 5, 41, 49-61, 

126-128, 136-139 
medium two-dimensional, 

49-56, 126-128, 136-139 
model three-dimensional, 

56-61 
sandstone, 105, 241 

Potential How, 41-42, 53-55 
Power 

spectral density, 229-230 
spectrum, 233 

Power-law, 26, 117-118, 121-123, 
126, 131 

dependence, 121 
distribution, 117 
function, 26 

Prefra.ctal, 17,19,21,23,25-26,32 
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Pressure, 42 
capillary, 43, 52, 132 
distribution, 52, 96 
distribution global, 52 

Principal stream, 210 
Probability 

critical pc, 105, 108 
definition of percolation P 00 , 

108 
distribution Gaussian, 164, 

169 
distribution joint, 167 
for step length, 165 
growth-, 97 
measure, 90-92, 191 
of success, 189-192 
pack of cards, 157-158 
percolation Poo , 108 

Process 
aggregation, 36-40 
antipersistent stochastic, 171, 

181 
Besicovitch, 71 
biased Hurst, 158-159 
binomial multiplicative, 

70-75, 85-89 
Brownian random, 164-170 
dynamic percolation, 131-139 
fractional Brownian, 170-178 
Gaussian random, 164-170, 

178, 185, 230 
Hurst biased, 158-159 
multiplicative, 70-79, 80-89, 

190 
multiplicative binomial, 

70-75, 85-89 
percolation, 104 
persistent stochastic, 181 
random, 153, 164-170, 194 
statistically independent, 153 
stochastic, 98, 181 

Product of sets, 213 
Profile analysis, 233 
Proportional.v asymptotically, 109 
Protein 

aggregation, 36 
surface, 229 

SUBJECT INDEX 

Quadratic Koch curve, 19 
Koch island, 202 
lattice, 105-112, 126-136, 

139-146 

Radial viscous fingering, 45-52, 94 
Radius of 

Rain 

curvature, 43 
of gyration, 49, 93, 96, 

98-100, 117-118, 120, 
122-124 

area, 203 
fields model for, 207 
rate, 207 

Rainfall, 149, 161 
Ramification, 35 
Random 

addition successive, 180-183, 
221 

fractal, 4-5, 30, 163, 184-185 
function, 166, 169-178, 234 
number, 132-135, 154-155, 

157-158, 169, 224 
number biased, 158 
packing, 32 
process, 152, 167, 194 
process Brownian, 168 
process Gaussian, 164-170, 

178, 185, 230 
process independent, 153 
record biased, 158-159 
set, 184 
variable, 154-183 
variable Gaussian, 164-170, 

221 
variable Markov-Ga.uss, 174 
walk, 4-5, 33, 54-56, 92-95, 

103-104, 126, 139, 156, 
163-170, 177, 189, 198 

walk biased, 159, 161 
Randomness, 4, 52, 104-105, 139, 

163 
a.nd fractal fingering, 52 

Range, 150 
analysis Hurst's rescaled, 

149-154 
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Ratio 
bifurcation, 210 
length, 18-19, 22, 85, 211 
mobility, 55, 57, 60 
scaling with different, 22, 85, 

185 
Rayleigh-Benard convection, 89-92 
Real space renormalization, 

112-117 
Realization of 

backbone, 126 
percolation cluster, 126 

Record 
biased random, 157-159 
Brownian, 164, 166-167, 

184-189 
fractal, 193, 197 
in time, 149 
of temperature, 149 
self-affine, 4, 184-189, 

193-199, 215 
simulation of random, 

154-162 
statistical, 171, 181 

Recovery oil, 41 
Recursively self-affine fractal curve, 

4, 181, 184-192 
Red bond, 130 
Relation 

area-length, 208 
area-number, 216 
area-perimeter, 200-204, 233, 

238 
area-volume, 238 
Einstein, 54, 139, 163-164, 

177 
homogeneity, 26 
length-area, 208 
mass-size, 117 
number-area, 216 
number-radius, 31-33, 49 
perimeter-area, 200-204, 233, 

238 
scaling, 112, 115, 117, 

168-169, 184-185, 215 
Renormalization 

group theory, 26 

Renormalization (continued) 
procedure, 113 
real space, 112-117 

Rescaled range, 149 
range analysis Hurst's, 

149-154 
Rescaling, 112-117 
Reservoir, 149-152 
Residual oil, 132 
Resistance Huctuation, 130 
Resistor 

fractal network, 67 
nonlinear, 130 

Reynolds number, 41 
River, 2,6 

discharge, 149 
fractal dimension of, 208 
System, 161, 208-211 

Rough surface, 10, 229 
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RIS analysis, 149-154 
fractional Brownian motion, 

178-179 
porosity, 161-162 
sunspot activity, 195-196 
varves, 160 
wave-height, 194-198 

Runway, 229 

Sand pack, 56 
consolidated, 57 

Sandstone, 239 
porous, 105, 241 

Scale invariance, 26, 167 
transformation, 120 

Scaling, 3, 17,26 
amplitude, 98, 100-101, 112, 

117 
argument, 122 
correction to, 112 
exponent, 6ee exponent 
exponent a, 68, 75-76, 83-84, 

95, 100, 153, 208 
finite size, 121-126 
function, 26, 49, 121, 124 
invariance, 18, 168 
law, 26, 112, 115, 117, 125 
of size distribution, 124 



280 

Scaling (continued) 
ratio, 26 
ratios unequal, 22, 85, 185 
relation, 112, 115, 117, 

168-169, 184-185, 215 
Scattering 

light, 36-40 
neutron, 37, 39-40, 241 
X-ray, 38, 238-241 

Schwarz area paradox, 9-11 
Scleroglutan, 47 
Seasonal variation of wave height, 

194-196 
Second-order phase transition, 26, 

109, 122, 171 
Sediment mud, 152 
Self-affine, 168, 185, 207-208, 215, 

233 
cloud four-dimensional, 183, 

206 
curve, 4, 181, 184-192 
fractal, 4, 142, 184-189, 204, 

215 
fractal curve recursively, 192 
function, 30, 188-189 
record, 4, 164, 184-189, 

193-196, 215 
statistically, 185 
surface, 215, 224, 233 
transformation, 169, 185 

Self-avoiding walk, 126 
and backbone, 126 

Self-intersecting curve, 21 
Self-similar 

diffusion front, 142 
fractal, 4, 19, 26, 63, 122, 

142, 184-189, 207, 210 
percolation cluster, 112-117 
statistically, 112-117, 184 

Sequence 
of mass exponents r(q), 80-89 
of random numbers, 154-157 

Set, 166, 184 
Cantor, 62-65, 67, 206 
intersection of, 206, 233 
of concentration, 78-79, 84 
of exponents infinite, 130 

SUBJECT INDEX 

Set (continued) 
measure of a, 14 
product of, 213 
random, 184 
self-similar, 184-185 
support Cantor, 86 
triadic Cantor, 62-64, 68 

Shortest path, 130 
Sierpinski 

carpet, 25-26 
gasket, 25-26 

Silica 
colloid, 38-40 
mesoporous, 238 

Similar islands, 200-202 
Similarity, 17 

dimension, 19, 21-22, 25, 
62-63, 65, 185 

transformation, 184 
Simulation 

computer, 34, 56, 94, 
105-148, 154-159, 
173-183, 214-228 

DLA, 33-34, 55-56, 93 
Monte Carlo, 154 
numerical, 3, 48, 56, 92-95, 

127-129 
of fractional Brownian motion, 

173-178 
of long-term dependence, 

157-162 
of noise, 178 
of random record, 152-157 

Simultaneous percolation, 147 
Singly connected bond, 24, 130 
Singular function, 77, 191-192 
Singularity, 88, 94 

exponent, 68, 75-76 
of the measure, 76 

Site percolation, 104-105, 112, 
121, 147 

Sites 
growth, 133 
of injection, 133 

Size 
cluster- distribution, 36, 

120-126 
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Size (continued) 
distribution, 52, 120-122, 124 
finite- scaling, 121-126 
holes of all, 112 
pore, 52, 132 
pore- distribution, 52, 

161-162, 228 
scaling of distribution, 124 

Smoluchowski aggregation, 36 
Skewed distribution, 198 
Snowflake; 49 
Spanning cluster, 105 
Spatial frequency, 216, 230 
Specific heat critical exponent, 26 
Spectrum 

amplitude, 220 
energy, 193 
fractal dimensions, 87-89, 94 
frequency, 217, 220 
multifractal, 76-78 
power, 229-230, 233 

Spheres 
cluster of, 31-32 
covering by, 14 
glass, 49 
packing of, 32 

Spread of blight, 104 
Spreading random, 104 
Square lattice, 104, 106 
Stability of interface, 44-45 
Staircase Devil's, 67-69, 77 
Standard deviation, 152, 155 
Statistical 

dependence long-run, 158 
independence, 163-170, 171 
self-affine, 112-117, 184 
self-similar, 112-117, 184 

Statistics 
fractal, 4, 198 
Gaussian, 162, 232 
non-Gaussian, 194 
of errors, 1 
wave-height, 193-199 

Stirling's formula, 74 
Stochastic process, 98, 181 

antipersistent, 171, 181 
persistent, 181 

Strategy of bold play, 189-192 
Stream order, 210 

principal, 210 
Subset, 73, 77, 94, 129, 184 

fractal, 67, 73-75, 83 
of backbone, 129 
of percolation cluster, 130 
union of, 75-76, 100 
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Success probability of, 189-192 
Successive random addition, 

180-183, 221 
Sunspot activity R/ S analysis of, 

195-186 
Support 

Cantor set, 86 
of measure, 77, 79, 82-85, 92, 

100, 103, 130 
Surface 

area, 9-11, 12-13 
Brownian, 215, 232 
fractal, 5, 181, 212-228, 236, 

239, 241 
fractal internal, 241 
fracture, 232-233 
Koch, 212-213 
mass exponent r(q), 80-89 
modeling fractal, 214-228 
molecular fractal, 236 
pore, 239 
profile, 214, 233 
rough, 10, 229 
self-affine, 215, 224, 233 
topography, 229 
translation-, 214-216 
triangulation, 9-11 

System 
dynamical, 5 
river, 161, 208-211 

Table of fractal dimensions, 189 
r exponent, 121 
rlag, 150,160-161,194 
r(q) mass exponent, 80-89 
Temperature, 89 

records of, 149 
transition, 26, 109 

Tension interfacial, 43-45, 127, 132 
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Test function, 14 
Theory 

gambling, 189 
of clouds, 205-207 
of viscous fingering, 41-45 
percolation, 104-148 
renormalization group, 26 

Thermal 
convection, 89-92 
equilibrium, 171 
fluctuation, 163 

Thermodynamic formulation of 
multifractals, 67 

Three-dimensional cloud, 226 
diffusion, 146-148 
displacement, 56-61, 139 
DLA, 35 
viscous fingering, 56-61 

Threshold 
exact percolation, 111 
percolation pc, 108 

Time 
lag T, 150, 160-161, 194 
records in, 149 
series, 90, 171 

Timid play, 189 
Timiskaming, 160 
Tip splitting growth, 47-48 
Topography surface, 229 
Topological dimension, 11, 17, 

63 
Tossing coins, 154-157 
Transfer matrix method, 112 
Transformation 

affine, 72, 169, 185, 191 
Fourier, 217, 219, 230 
renormalization, 112-117 
scale, 120 
similarity, 184 

Transition 
magnetic phase, 109 
phase, 26, 66, 109 
second-order phase, 26, 109, 

122, 171 
temperature, 26, 109 

Translation, 18 
surface, 214-216 

SUBJECT INDEX 

Transparent model, 45-61 
Transport 

phenomena, 131 
phenomena fractal, 177 

Trapped fluid, 126,132 
Trapping invasion percolation with, 

136-138 

Tree 

invasion percolation without, 
134-135, 137-138 

fractal, 3 
ring, 149, 153 
structure fractal, 55 

Triadic 
Cantor set, 62-64 
Koch cluster, 32-33 
Koch curve, 15-26, 33, 202, 

206, 213 
Koch surface, 212-213 

Triangle 
sweep, 20 
sweep modified, 22 

Triangular 
lattice, 112-117, 123, 142 
lattice percolation threshold, 

111 
Triangulation, 9-11 
Tributaries, 210 
Trivial fixed-point, 113 
Tro~flaket, 193 
Thrbulence, 2, 5, 66 

atmospheric, 76-77, 205-206 
grid, 76-77 

Thrbulent diffusion, 5, 205 
flow, 41, 66, 76 

Two-dimensional porous medium, 
49-56, 126-128, 136-139 

Two-phase flow, 41-43, 56-61, 
136-139 

Two-scale fractal measure, 85-89 

Unequal scaling ratios, 22, 85, 185 
Uniform 

distribution, 32 
measure, 89 

Union of subsets, 75-76, 100 
Universality class, 92 
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Unstable wavelength, 45 
Upper cutoff, 184, 239 

Variable 
Gaussian random, 164-170, 

221 
Markov-Gauss random, 174 
random, 154-183 

Variance, 152, 154, 164-167, 173, 
178, 180-181, 195, 221, 
224, 229-230 

of increments, 162, 170-171, 
173, 177, 180, 234 

Varves R/ B analysis of, 160 
Velocity critical, 45 
Viscosity, 41-45 
Viscous fingering 

and D LA, 53-56 
dynamics of, 49-52, 96, 103 
fractal dimension of, 49 
in porous media, 56-61 
radial, 47-52 
theory ot 41-45 
three-dimensional, 56-61 

Volume, 13-14 
-area relation, 238 
fractal, 241 

Voss's algorithm, 5, 180-183, 221 

Walk random, see random walk 
and backbone, 126 
biased, 159, 161 
self-avoiding, 126 

Water, 41-61 126, 133, 141 150 
displacing oil, 43, 104, 131 
drying, 145-146 

Water (continued) 
scleroglutan in, 47 

Water-oil interface, 132 
Wave-height, 181, 193, 198 

maximum, 193 
normalized, 195 
RIB analysis of, 190-198 
seasonally adjusted, 195 
statistics, 193-199 
statistics persistent, 197 

Wavelength, 230 
critical, 44, 51 
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of maximum instability, 45, 
47 

of pertubation, 44-45 
unstable, 44-45, 47 

Weierstrass-Mandelbrot 
coastline, 220 
function, 27-30, 220 

Well pattern, 54, 57, 60 
Wetting, 43, 61, 126, 132 
White noise, 174, 178 
Winding number, 90-92 
Woods metal, 53, 139 

e connectedness length, 122-126 
e correlation length, 122-126, 143 
X-ray scattering, 38, 238-241 

Yardstick, 8, 9, 188, 200-202, 212, 
233, 238, 239 

area-dependent, 200 

Zero crossing, 193 
Zinc sulfate, 35 
Zone active growth, 96-97 




