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Abstract
The Clarke Urban Growth Model (UGM), a cellular automaton (CA) that simulates urban growth through 
time, is coupled with the Deltatron Land Use/Land Cover Model (DLM), which extends representation 
capabilities to multiple land cover class transitions, to create a new, more robust model, SLEUTH. The DLM 
depicts urban expansion into the landscape produced by the UGM. The DLM uses CA-based rules, class-
transition probabilities, and local topography to create deltatrons (bringers of change) and enforce land class 
transitions within homogenous land class areas, as well as at the interface of land use/land cover types. These 
deltatrons enforce spatial and temporal auto-correlation in the land cover transition process. The dynamics of 
the land cover change are defined through a four-step process: (i) Initial Change, (ii) Cluster Change, (iii) 
Propagate Change, and (iv) Age Deltatrons. For the first time, these simulated urban and land cover 
processes, previously only formulated as computer algorithms, have been translated into a functional form 
with their corresponding pseudo code, which both clarifies their character and makes it easier to compare 
with other approaches. In addition, this formalization makes it simpler to include other important simulated 
human-made and natural processes in future coupled modeling. 
  
SLEUTH was tested using synthetic data sets and then applied at 1-km resolution to the Mid-Atlantic 
Integrated Assessment (MAIA) area of the Environmental Protection Agency. After the model went through 
extensive calibration for the MAIA area, forecasts of urban growth and other land cover change were 
simulated through 50 Monte Carlo iterations starting in 1992 to produce a probability-related growth map of 
land cover classes for the year 2050. A corresponding map was produced that describes the uncertainty 
related to any cell's predicted land-cover class. Together, these maps provide a valuable tool to describe 
predicted land cover change and its uncertainty. By bringing the maps back into a geographic information 
system, spatial context can be given to land class forecasts and the associated level of confidence assessed. 
Additional land cover dynamics could easily be added to the current approach. This approach is the first of its 
kind, and is applicable to any geographical region. Cellular automata as complex systems models are 
valuable tools for forecasting how the spread of urbanization could shape future land cover patterns, at many 
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spatial scales. 
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Complex System Modeling with Cellular Automata
Evolving from previous work, a model of land cover change has been developed and applied to a regional 
dataset. The cellular automaton Clarke Urban Growth Model (UGM) simulated the effect of topography, 
adjacency, and transportation networks on the patterns of urbanization though time (Clarke, Gaydos, and 
Hoppen 1996). This model was calibrated using historical data for a region compiled in a geographic 
information system (GIS) (Clarke, Hoppen, and Gaydos 1996). The results were then used to forecast the 
development of the regional urban system into the future (Clarke and Gaydos 1998). The land cover change 
deltatron model explored in this paper, is tightly coupled with the UGM, and also utilizes historical, digital 
data maps to calibrate model performance. The models together are referred to as SLEUTH by reference to 
the models’ input data requirements: Slope, Land cover, Exclusion, Urban, Transportation, Hillshade. The 
sum being greater that its parts, SLEUTH, using only the clues given by known data input, seeks to discover 
emergent form in a dynamic landscape. 
  
The evolution of land cover patterns is a process governed by a large number of forces both natural to the 
environment and imposed by human disruption. The state of the system at any given time is the result of the 
interplay of its many components. Trying to identify the intricate inter-relationships of these many drivers 
has often led to frustration. Recently, complex systems approaches suggest the multitude of interactions that 
take place on a largescale, or individual level, forms the basis of system wide, or aggregate, behavior.
  
The foundation for this complex system approach was pioneered by Von Neuman (1966) who presented the 
idea that a type of computing machine could not only reproduce itself, but could generate a machine of 
greater complexity than the original. This concept was expressed in the form of a cellular automata (CA). 
The best known simple example of a CA is the Game of Life developed by John Conway (Gardener, 1970). 
The game is executed upon a regular tessellation of cells, in this case a grid of uniform, square pixels. The 
cells may exist in one of two states: alive or dead. It was discovered that, depending upon the configuration 
of the initial conditions, complex spatial patterns could emerge though repeatedly applying the behavior rules 
to the grid. In recent years CA has been applied in various fields, and many examples can be found regarding 
the subject of urban modeling and form (White and Engelen 1993; Papini and Rabino1997; Batty and Xie 
1994; Clarke, Hoppen and Gaydos 1996).
  
We have extended the scope of our research from modeling urban development to include how this 
expansion in turn affects sequential land transitions (Clarke 1997, Candau 2000). Physical patterns of land 
cover change may be shown three ways. The first is the tendency of one land class to expand into another 
where the two meet. This is the most common type and may be seen as the expression of a land cover type 
“growing” into its neighbors as topography and neighborhood resistance allows. The second is a less 
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predictable occurrence of a new land cover type being introduced into an otherwise homogenous area. Both 
of these trends, though they begin at a discrete point and time, may signal similar transition events in their 
neighborhood. This third occurrence, a perpetuation of change, enables transition forces to be carried across a 
landscape. The deltatron model seeks to build upon these concepts of how, where and when land cover 
dynamics take place.

Definition of Urban Dynamics
The urban growth dynamic implemented in UGM is defined through four steps that we call (i) Spontaneous 
Growth, (ii) New Spreading Centers, (iii) Edge Growth, and (iv) Road-Influenced Growth. In this section we 
first discuss the different growth steps and the functional form of their dynamics, and then depict an example 
of the growth step followed by the pseudo code that defines this step. 
 
Two measures of suitability affect the likelihood of urbanization throughout the growth process. The 
suitability is defined by an exclusion layer (for example, water, swamps, etc.) and by slope. Slope above 21% 
cannot be urbanized. Given that the local slope (slope (i,j)) is below 22%, the slope_coefficient determines 
the weight of the probability that the location (i,j) may be built upon. 

(i) Spontaneous Growth
Spontaneous growth (figure 1) defines the occurrence of random urbanization of land. In the cellular 
automaton framework this means that any non-urbanized cell on the lattice has a certain (small) probability 
of becoming urbanized in any time step. Thus, whether a given cell U(i,j,t) at coordinate (i,j) at time t will be 
urbanized at time t+1 can be expressed by
 

(Notation_1)

 
where the parameter dispersion_coefficient ( diffusion_coefficient in previous literature (Clarke, Hoppen, 
Gaydos 1996)) determines the (small) spontaneous, global urbanization probability, and the slope_coefficient 
parameter determines the weighted probability of the local slope. The stochasticity of the process is indicated 
by random. If the cell is already urbanized or excluded from urbanization, it will not change, and therefore 
the ability to transition also depends on the cell’s own current value.
 

Spontaneous Growth: 
F(dispersion_coefficient, slope_coefficient) 
{ 

for (p < dispersion_value) 
{ 

select pixel location (i,j) at random 
if ((i,j) is available for urbanization) 
{ 

(i,j) = urban 
New Spreading Center Growth 

} 
} 
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} end spontaneous growth 

Figure 1 Spontaneous growth example and pseudo code.

 

(ii) New Spreading Center Growth
The next urban growth step is defined though the dynamics of new spreading centers (figure 2). As the name 
indicates, this step determines whether any of the new, spontaneously urbanized cells will become new urban 
spreading centers. The global parameter, breed_coefficient, defines the probability for each new urbanized 
cell U(i,j,t+1) to become a new spreading center U'(i,j,t+1), given two neighboring cells also are available 
for urbanization
 

(Notation_2)

where (k,l) are nearest neighbors to (i,j). If the cell is allowed to become a spreading center, two additional cells 
adjacent to the new spreading center cell also have to be urbanized. Thus an urban spreading center is defined as a 
location with three or more adjacent urbanized cells. The actualization of this step is dependent upon the 
slope_coefficient-weighted topography and the availability of neighborhood cells to make the transition. 

New Spreading Center Growth: 
F(breed_coefficient, slope_coefficient)
{

if (random_integer < breed_coefficient)

if (two neighborhood pixels are available 

for urbanization)

(i,j) neighbors = urban 
} end new spreading center growth 

file:///E|/GIS_EM4_Conference_2000/94/index.html (4 of 15)3/12/2004 13:09:58



A coupled cellular automaton model for land use/land cover dynamics

Figure 2 New spreading center growth example and pseudo code.

 

(iii) Edge Growth 
Edge-growth dynamics (figure 3) define the part of the growth that stems from existing spreading centers. 
This growth propagates both the new centers generated in step ii in this time step, time (t+1), and the more 
established centers from earlier times. Thus, if a non-urban cell has at least three urbanized neighboring cells, 
it has a certain global probability to also become urbanized defined by the spread_coefficient, given it is 
possible to build on the cell (slope_coefficient). Thus this edge growth can be expressed by 
 

(Notation_3)

where (k,l) belongs to the nearest neighborhood of (i,j). 

Edge Growth: 
F(spread_coefficient, slope_coefficient) 
{ 

for (all non-edge pixels (i,j)) 

if ((i,j) is urban) and (random_integer 

< spread_coefficient) 

if (at least two urban neighbors exist) 

if (a randomly chosen, non-urban

neighbor is available for urbanization) 

(i,j) neighbor = urban 
} end edge growth 

Figure 3 Edge growth example and pseudo code.

 

(iv) Road-Influenced Growth
The final growth step, road-influenced growth (figure 4), is determined by the existing transportation 
infrastructure as well as the most recent urbanization done under steps ii and iii. With a probability defined 
by breed_coefficient, newly urbanized cells (at time t+1) are selected, and the existence of a road is sought in 
their neighborhoods. If a road is found within a given maximal radius (determined by 
road_gravity_coefficient) of the selected cell, a temporary urban cell is placed at the point on the road that is 
closest to the selected cell. Next, this temporary urban cell conducts a random walk along the road (or roads 
connected to the original road) where the number of steps is determined by the parameter 
dispersion_coefficient. The final location of this temporary urbanized cell is then considered as a new urban 
spreading nucleus. If a neighboring cell to the temporary urbanized cell (on the road) is available for 
urbanization, it will happen (randomly picked among possible candidates). If two adjacent cells to this newly 
urbanized cell are also available for urbanization it will happen (randomly picked among candidates). Thus 
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the creation of the temporary urbanized cell on the road is defined by 
 

(Notation_4.1)

where i,j,k,l,m, and n are cell coordinates, and R(m,n) defines a road cell. The random walk on the road may be 
expressed by 

(Notation_4.2)

where (i,j) are road cells neighboring (k,l). If we define the location of the temporary urbanized cell at the end of the 
random walk by (p,q), the new adjacent urban spreading center will be defined by 

(Notation_4.3)

and two additional adjacent urbanized cells may be added using 

(Notation_4.4)

where (i,j) and (k,l) belong to the nearest neighborhood of (p,q). Note how this step is similar to notation 3.

  

Road-Influenced Growth: 
F(breed_coefficient, road_gravity_coefficient, 
dispersion_coefficient, slope_coefficient) 
{ 

for (p <= breed_coefficient) 

{ 

road_gravity = value which is a function of

 image size and road_gravity_coefficient 

max_search = maximum distance, determined by 

road_gravity, for which a road pixel is searched 

(i,j) = randomly selected pixel, urbanized within the 

current growth cycle 

road_found = search outward from (i,j), up to 

max_search, for a road pixel 

if (road_found) 

{ 

walk along the road, in randomly selected 

directions, for a number of steps determined 

by the road_value and the 
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dispersion_coefficient 

if (a neighboring pixel is available for urbanization) 

(i,j) neighbor = urban 

if (two neighbors of the newly urban pixel

are available for urbanization) 

two urban pixel neighbors = urban 
} } } end road-influenced growth 

Figure 4 Road-influenced growth example and pseudo code.

 

Deltatron Dynamics
The urbanization process drives the changes in the non-urbanized land cover. The dynamics of the land cover 
change are defined through a four-step process: (i) Initial Change, (ii) Cluster Change, (iii) Propagate 
Change, and (iv) Age Deltatrons. In the following section we first explain the different growth steps and the 
functional form of their dynamics, and then depict an example of the step followed by the actual pseudo code 
that defines this step. 

Initial Conditions
In the following, the land cover change dynamics are assumed to have been active for at least three update 
cycles so that besides the land cover space (lattice), a corresponding "aged deltatron space or layer" also 
exists (figure 5). Deltatrons, which are “bringers of change", track the spatial and temporal effects of land 
transitions. They do not contain land class values, but act as a reference of where and when a change has 
occurred. Depending upon the age of the deltatron, its locally associated land class may be available for 
propagating change, or holding it in its current state. We use L(i,j,t) to define the land cover class (value) at (i,
j) at time t and D(i,j,t) as the corresponding age in the deltatron layer. Note that the current deltatron age 
(value of D(i,j,t)) is different from the current time t in the simulation.
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Input data configuration for Deltatron Dynamics example: 

delta space at (t
0
 or greater) 

cluster_size = 5 

min_years_between_transitions = 3

Figure 5 Initial conditions of deltatron example.

 

(i) Initiate Change
Each newly urbanized cell (newly_urbanized) is now assumed to induce a potential change in land cover 
(figure 6) and, as a result, produce a deltatron in a randomly selected non-urbanized cell 
 

(Notation 5)

 
where the selected cell either will stay the same or transition to another land cover type. This is determined 
by a probability weighted by the average slopes (average_slopes) for each land cover class, the historical land 
cover changes, and the slope of the current cell. These probabilities are defined such that more frequent land 
use changes, as well as historically occurring correlations between slopes and land uses, are weighted 
appropriately. They define a local Markov chain (a Random Markov Field) with transition probabilities 
between the current land cover class and all other land use classes (vector of transition probabilities by 
multi_state_markov_chain). If a transition occurs, a new deltatron is created. Only cells that are not already 
deltatrons can be recruited as a location for a new deltatron. 
 

Initiate Change: 
G(number of new pixels) 
{ 

for (p < number of new urban pixels) 
generate a transition seed 
{ 

randomly select a pixel (i,j) to be center of 
transition cluster 

new_land_cover_class = randomly selected class, 
weighted by transition probability and slope 

if ((i,j) passes transition test) 
{ 

apply land class change at (i,j) 
deltatron = 1 
Create Change Cluster 

} } } end initiate change 

Figure 6 Initiate change example and pseudo code.
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(ii) Create Change Cluster
The Create Cluster dynamics (figure 7) are defined as an aggregation process (growth) of these newly created 
deltatrons and the associated land cover transition. The parameter cluster_size, controls how large each new 
deltatron cluster can grow 
 

(Notation_6)

where L(k,l) are neighboring cells to the new deltatron cell at location (p,q). Each new cell that is picked (at random 
among the possible neighboring cells) is now changed to the same land cover class as the new deltatron, or remains 
unchanged, defined by the weighted slope and historic transition probabilities (local two_state_markov_chain, also 
defines a Random Markov Field). Note that in this step, the cells can only change to the land use class the associated 
deltatron has, or remain unchanged. In step i the cell can potentially change to any one of the land cover classes 
weighted by the appropriate probabilities. 

Create Change Cluster: 
{ 

save seed location (i,j) to (i_center, j_center) 
for (p < cluster_size) 
{ 

current_seed_pixel (i,j) = randomly selected (i,j) 
neighbor 

if (current_seed_pixel (i,j) passes random probability 
test) 

{ 
apply land class change at (i,j) 
deltatron(i,j) = 1 
current_seed_pixel (i,j) = randomly selected (i,j) 

neighbor 
apply land class change at (i,j) 
deltatron (i,j) = 1 

} 
chances = 1 in 8 that the current_search_pixel will be 

set back to the original seed location 
if (chances) 

(i,j) = (i_center, j_center) 
} } end Create Change Cluster 

Figure 7 Create change cluster example and pseudo code.

 

The newly transitioned cell now acts as the land cover change, aggregation center. Again a random cell from its 
neighborhood is tested for land cover change with the same probabilities (to remain unchanged or change to the same 
new land cover class). To encourage clustering, a certain probability exists that the aggregation center will be moved 
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back to the original (first) deltatron location (i_center, j_center) as the process continues, until terminated by the size 
of the parameter cluster_size. 

(iii) Propagate Change
The Propagate Change dynamics (figure 8) is very similar to the Edge Growth step in the Urban Growth 
dynamics. All non-deltatron cells which are neighbors to at least two deltatron cells with an age of two (they 
were created in time t-1) are tested against the same weighted probability to either remain unchanged or 
change to the same land cover type as a neighboring deltatron’s land cover type
 

(Notation_7)

 

Propagate Change: 
{ 

for (all pixels (i,j)) 

if ((i,j) is not a deltatron) 

{ 

number_deltatron_neighbors = number of neighbors 

where deltatron == age 2 

if (number_deltatron_neighbors == 2)

{ 

randomly select one of the deltatron_neighbors 

get neighbor's land cover class 

if ((i,j) passes random probability test) 

{ 

apply land class change at (i,j) 

deltatron(i,j) = 1 

} } } } end propagate change 

Figure 8 Propagate change example and pseudo code.

 

(iv) Age Deltatrons
Finally, in the Age Deltatrons step (figure 9) all deltatrons are aged to the next time step. The number or 
cycles a deltatron may live is defined by min_years_between_transitions. If they become “older” then this 
maximum deltatron age, they “die” and can, in principle, be recruited as a new potential deltatron in the next 
growth cycle 
 

(Notation_8)
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Age Deltatrons: 
{ 

for (all pixels (i,j)) 
if (deltatron(i,j) > 0) 

deltatron(i,j)++ 
for (all pixels (i,j)) 

if (deltatron(i,j) > min_years_between_transitions) 
deltatron(i,j) = 0 

} end age deltatrons 

Figure 9 Aging deltatrons example and pseudo code.

Testing the Coupled CA Model: The MAIA Case Study
The Mid-Atlantic Integrated Assessment (MAIA) study area is a region designated by the Environmental 
Protection Agency for the implementation of research, monitoring, and assessment of ecological conditions 
(http://www.epa.gov/maia/html/about.html). It includes seven states and the District of Columbia on the 
eastern coast of the United States: Delaware, District of Columbia, Maryland, North Carolina, New York, 
Pennsylvania, Virginia, West Virginia.
  
The U. S. Geological Survey (USGS), in cooperation with the University of California, Santa Barbara, 
applied SLEUTH to the MAIA region at a data resolution of 1-km. Using a temporal GIS database, an 
extensive calibration of the model (Clarke, Hoppen and Gaydos 1996) for the area was performed. To create 
the temporal database urban data were generated from U.S. Census Bureau data for the years 1950, 1970, 
1980, and 1990. USGS 1:2,000,000 Digital Line Graphs of interstate and major highways formed the base 
transportation map for the year 1980. Maps from American Automobile Association were used as ancillary 
data to identify the extent of interstate highways in 1950 and 1970. Two Anderson Level I classified land 
cover maps from the years 1975 and 1992 were used to define the land cover class-transition matrix. For 
calibration, the earliest land cover map provided initial conditions for the deltatron model. The most recent 
land cover map was used to measure how well the spatial patterns of land cover evolution were modeled for 
that year. In the final model year, a map of simulated land cover was produced and compared on a per pixel 
basis with the known data. This new comparison metric was added to the calibration process so that the 
deltatron model might influence adjustment of the coefficients. 

Probabilistic Forecasting
Once model calibration for the MAIA region was complete, urban growth and land cover change was 
simulated into the future. Beginning in the data year 1992 (figure 10), the model was run for 50 Monte Carlo 
iterations to the year 2050. From this process, two prediction maps were produced that describe the 
likelihood and character of land cover change. The first (figure 11) is a map of the most probable forecasted 
land class for the year 2050. Each location is classified by its “winning” land cover type. That is, by the land 
class present most often over the 50 Monte Carlo iterations. Figure 12 shows the pixels that changed class 
from 1992 to 2050. They are color classified by the class they changed to. The urban growth around already 
established urban areas is clear. 
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Figure 10 MAIA 1992 land cover. Figure 11 MAIA 2050 forecasted land cover.
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Figure 12 MAIA 2050 land cover, color classified by 
forecasted land type.

Figure 13 MAIA 2050 contrast-stretched cumulative 
uncertainty map.

 
A second image produced by SLEUTH is a map (figure 13) of uncertainty that is associated with the land 
cover forecasts. It is calculated by counting the number of times each class was at a given location over all 
Monte Carlo iterations. If a location is found to always have the same land cover when the year 2050 is 
reached, its uncertainty value is zero and will appear black in the image. However, if one land class is equally 
likely as another of being present, there is a high degree of uncertainty related to modeled class transition. 
The higher a pixel’s value in the uncertainty map the lighter it will appear, and the less confidant we are in 
the model’s prediction at that location. In the case of pixels that are classified as “NODATA”, nothing is 
known about their state, and their associated uncertainty is also at a maximum. 

Conclusions and Discussion
Cellular automata as complex systems models are valuable tools for forecasting how the spread of 
urbanization could shape future land cover patterns at different spatial scales. The basic SLEUTH dynamics 
of urbanization, and resulting land cover change, have successfully been tested on eight mid-Atlantic entities 
showing the strength and the potential value of a coupling between urban growth and land cover changes. 
This approach is the first of its kind and is applicable to any geographical region. Its current form is quite 
general, but allows for higher levels of complexity. For example, additional natural land cover dynamics 
easily could be added to the current approach through ecological succession (for example, grass land to 
woodland). Further, these simulated processes, previously only formulated as computer algorithms, have 
been translated into a functional form with their corresponding pseudo code, which both clarifies their 
character and makes it easier to compare with other approaches. In addition, this formalization makes it 
simpler to include other important simulated human-made and natural processes in future coupled modeling 
(Heiken et. al. 2000). 
  
The cumulative land cover and uncertainty maps show new information about the spatial and temporal 
relations of land transitions. Together, these maps provide a valuable tool to describe predicted land cover 
change and its uncertainty. By bringing the maps back into a GIS, spatial context can be given to land class 
forecasts and the associated level of confidence assessed. 
  
SLEUTH is written in the C programming language and implemented on a variety of platforms, including a 
CRAY supercomputer in parallel mode, on SGI and SUN workstations, and on PC systems running LINUX. 
The model’s portability has allowed it to be applied to various urban regions around the world, and at various 
scales. Additional application sites include the Rio Grande Basin, New Mexico; Santa Barbara, Calif; and 
Lisbon, Portugal. Areas of study that will be modeled within the next year include Mexico City, Mexico; 
Philadelphia, Penn; and the Santa Clara Valley, Calif. Complete documentation, including publications, 
implementation instructions, links to study site data, and downloadable source code may be found on-line at 
the Project Gigalopolis web site (http//:www.ncgia.ucsb.edu/projects/gig/).
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