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Abstract: 
In urban planning, the definition of limits of towns or of town sections is required in 
particular in the context of zoning. Such definition is purely conventional and does not refer 
to the morphological reality of urban areas. Even if it is possible to identify limits of zones by 
means of functional criteria, until now no appropriate method exists to define limits on the 
base of morphological criteria. This lack becomes particularly obvious when tackling with 
periurban areas. Thus, it is here proposed to analyse urban limits through a multi-scale 
approach, which makes it possible to study urban patterns by avoiding the introduction of any 
presupposition on the urban spatial structure. 
 
Different notions are introduced and discussed. The terms of “border”, “limit” (or 
“boundary”) and “envelope” are precisely defined and it is shown that if the urban border can 
in any case be identified, the external envelope of an urban area does not always exist. These 
reflections are illustrated by geometrical models on fractal nature. 
 
In a first section of this paper, a fractal reference model of urban patterns and borders is 
introduced. On this basis, the second section of the paper is dedicated to the presentation of a 
coherent concept the envelope of an urban area, which leads to develop a methodology for 
extracting the urban envelope from cartographic representations of built-up areas. The third 
part of the presented research focuses on how fractal measuring methods may be fruitful for 
linking the notions previously defined to reality. On the one hand, the notion of urban border 
refers to the contours of buildings, which can be extracted from cartographic representations 
and which can afterward be analysed. On the other hand, the envelope of a zone is obtained 
by creating clusters of buildings lying within a certain range of distances. By considering 
stepwise larger and larger distances, bigger clusters emerge. At each step of the analysis, the 
envelope of the created clusters can be extracted and their morphology can be characterised 
by fractal measures. 
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Introduction 
 
In urban planning, the definition of limits of towns or town sections is required in particular in 
the context of zoning. Indeed, delimiting zones in an urban area or defining the boundaries of 
an urban area is an important challenge for applying planning policy, for collecting taxes, etc. 
However, no consensus exists about how to define the limit of an urban area. Each country 
recurs to its own criteria often combining different indicators, which is the source of 
ambiguities when comparing urban areas at an international level (Le Gléau et al., 1997). 
Moreover, those definitions are purely conventional and do not refer to the morphological 
reality of urban areas. 
 
It seems possible to find a way for defining limits of densely built-up areas, since the 
distances separating neighbouring buildings lie within a rather restricted range. To give an 
example, French authorities define “urban units” (unités urbaines) as the aggregation of 
buildings which are separated by less than 200 meters from one another and which belongs to 
either a “commune” (i.e. the smallest French territorial unit) or a set of “communes” with 
more than 2000 inhabitants. In Great-Britain, a more complex definition is used, which 
requires the existence of a transportation network and refers to buildings which are no more 
than 50 meters apart (Longley & Batty, 1991). However, such criteria become questionable 
when considering urban fringes. Irregular patterns occur, where recent detached housing 
estates and traditional rural settlement patterns are mixed. Figure 1a shows an example where 
urbanisation is very diffuse on the fringe of the town. This example shows that the distance 
between neighbouring buildings may differ considerably. In the example of figure 1b, a 
similar phenomenon can be observed at the level of a metropolitan area. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 1: (a) The northern urban fringe of the city of Besançon (East of France): diffuse 
strips of houses follow the road network, where ancient farm houses and new houses are
mixed. (b) The western part of the urban area of Lille (North of France): different kinds of 
urban pattern are mixed. 
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As suggested by the two examples presented in the figure 1, the delimitation of urban areas 
leads to carry out some reflections about the distinction between urban and rural. Actually, it 
can be considered that because urban areas include periurban areas, the delimitation of urban 
areas consists in the identification of the spatial extend of the periurbanisation1. But, it is as 
much difficult to find a univocal definition of an urban area as to find a univocal definition of 
a rural area. Two main reasons explain such a difficulty: firstly, there exists a wide range for 
the distances separating neighbouring buildings in sprawling urban patterns; secondly, the 
morphological characteristics of periurban zones may vary a lot from a much diffused 
urbanisation (“moth-eaten” rural areas) to reduced space consumption (grouped houses). 
 
If it is possible to identify periurban zones on the base on functional criteria with respect to 
the typologies of intra-urban zones defined by different countries of Europe, until now no 
appropriate method exists to define limits on the base of morphological criteria (Caruso et al., 
2001; Caruso et al., 2003). Morphological criteria are although particularly reliable since they 
refer solely to the spatial configuration of the considered pattern. On the contrary, functional 
criteria, because they are based on changing spatial units do not allow analysis across time. 
Moreover, in the perspective of an international comparison, it is interesting to define an 
urban limit on the basis of few criteria, which is possible using morphological criteria. Also in 
a modelling perspective, a morphological approach of the urban limits seems interesting, as 
pointed out by Batty and Longley (1986) « In designing the models, it was thought important 
to keep the variables in the models as simple as possible and, at the same time, easily 
measurable ». 
 
Due to the difficulty to find morphological criteria for delimiting urban areas, it seems not 
surprising that for a long time little research tackled with the particular morphological features 
of urban patterns issued from urban sprawl. Of course, the urban sprawl phenomenon it-self 
has been widely studied, as well synthesised in (Galster et al., 2001). But, as explained in 
(Torrens & Alberti, 2000), “without robust empirical metrics to inform the debate, however, 
much of this argument remains conceptual, even speculative”. Moreover, as it is the case for 
the paper of Torrens and Alberti, research about morphological aspects of urban sprawl 
mainly aim to characterise (even to evaluate) its attributes and not to delimit the spatial extent 
of periurban areas. 

Even the vocabulary used is sometimes ambiguous: different terms are used like envelope, 
limit, border, boundaries, fringes... But there meaning is not always the same. It appears here 
necessary to clarify some notions we use further in the present paper. 
• The envelope is for us a virtual limit of the urban area. The reflections presented in the 

paper concern mainly the possibility of finding morphological criteria to define the 
envelope of an urban area. The main feature we consider for the envelope is how tortuous 
it is. 

                                                 
1 We can here notice that the notion of periurbanisation does not exist in the English speaking literature, where 
the notions of suburbanisation or counterurbanisation are most often used (Caruso et al., 2001). Nevertheless, 
we chose to use here the concept of periurbanisation taken from French literature. Periurban areas are located 
between city and countryside. They can be defined by 2 major characteristics: they are under urban influence and 
they present rural characteristics (existence of an agricultural and forest system). The crucial difference between 
suburban and periurban areas is the presence or not of such rural characteristics. 
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• On the contrary, we call “borders” all really existing contours of objects. In a medieval 
town, the outer wall would be a border but could also be the envelope, if no suburbs exist 
outside. 

• Sometimes, we also speak about “urban fringes” as we already did previously. We 
designate by this term the outskirts lying in periphery of the urban areas, where the 
urbanisation process transforms progressively rural settlements into periurban patterns.  

• We use the expressions “urban limit” or “urban boundary” for characterizing either a 
border or an envelope in a rather general sense. 

 
According to our terminology, the morphological definitions of urban limits, which refer to 
arbitrarily fixed criteria as distances between neighbouring houses, should be interpreted as 
some attempts to define an envelope. Indeed, such limits mostly do not really exist; one 
exception would be that of a medieval town, surrounded by a wall, without suburbs; the wall 
is then a real border which may be used as reference for defining an envelope.  
 
Beyond planners and politicians, cartographers tend also to “materialise” the envelope when 
drawing coarse-grained maps on small scales. Nevertheless, cartographic lines are no real 
existing objects. Figure 2a illustrates this assertion: we designate as border of the 
agglomeration the set of all the limits of the buildings, as it may be obtained using a GIS, 
whereas the thick borderline corresponds to the virtual delimitation as it appears on coarse-
grained maps like that of figure 2b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We could expect that such envelopes introduced by cartographers are more or less the result 
of neglecting details which refer to finer scales than the considered one. Eliminating the 

An outskirt of Stuttgart, Botnang 

Figure 2: (a) An outskirt of Stuttgart, Botnang: the limits of the buildings have been 
extracted from a GIS data set based on cadastral maps. The envelope is a virtual line 
delimiting approximately the built-up area. (b) A simplified cartographic representation of 
the Stuttgart agglomeration. The borderline of the black spot referring to Botnang may be 
interpreted as an envelope resembling to the thick borderline of figure (a). 
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details would then be a purely morphological approach and could be of interest for finding a 
coherent way to define the envelope of an urban area. However, it is well-known that 
cartographers combine different methods to construct their simplified maps. Moreover they 
prefer representing symbolically important features of a given urban pattern to the detriment 
of a rigorous simplification of the original cartographic data2. Therefore, the creation of 
simplified maps is based on practical definitions, which does not provide a coherent 
representation of urban envelopes. 
 
Hence, the present paper aims to expose preliminary reflections before proposing a 
morphological definition of urban areas. No precise definition is finally proposed, but the 
basis for such a definition is set out. On a substantive point of view, the goal is to develop a 
method, which can be used for constructing stepwise urban borderlines solely based on the 
spatial distribution of the buildings. The developed method refers directly to fractal geometry, 
which is by definition a multi-scale approach of forms. It allows us to take into account 
phenomena referring to different ranges of distances. 
 
In a first section of this paper, a fractal reference model of urban patterns and borders is 
introduced. On this basis, the second section of the paper is dedicated to the presentation of a 
coherent concept the envelope of an urban area, which leads to develop a methodology for 
extracting the urban envelope from cartographic representations of built-up areas. In the third 
part of the paper, it is shown how such a method can be applied to real world patterns. 

                                                 
2 E.g. they conserve important road axis by enlarging them artificially.  
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1. Bases for the reflection 
 
As pointed out previously the main difficulty for finding a reliable procedure for defining an 
urban envelope is related to the fact that distances between neighbouring buildings vary 
within a large range, in particular in the fringes of agglomerations. This incited us to recur for 
this goal to a multi-scale approach based on fractal geometry in order to establish a link 
between the border of the town as defined previously and the construction of an envelope 
from a purely morphological point of view. For this aim we introduce fractal models, which 
serve to illustrate urban pattern morphology across scales 
 
Only after this first step, we consider to what extend this envelope is tortuous or not. This 
question has already been considered in an early paper of P. Longley and M. Batty (1991) 
where the authors measured by means of fractal dimensions the shape of urban boundaries as 
they were defined by the Office of Population Censuses and Surveys. In this paper the authors 
called these urban boundaries “envelope”.  
 
1.1 The data used 
 
We choose to distinguish three basic types of urban land-uses: buildings, transportation 
networks and free spaces like courtyards, squares etc. We consider transportation networks as 
non built-up space: built-up space consists solely of the buildings. Buildings are either 
isolated the ones from the others (e.g. detached houses), or they form clusters which are 
surrounded by the street network (e.g. terraced houses). Thus, on a morphological point of 
view, an urban area is composed by a multitude of clusters of different size.  
 
1.2 The basic reference model: the Fournier dust 
 
In order to develop a coherent fractal approach of the urban envelop, we recur here to a 
particular type of fractals showing properties, which seem adapted to describe the main 
morphological features of urban patterns relevant in this context. In many previous papers we 
used Sierpinski carpets as basic model for urban patterns (cf. e.g. Frankhauser (1994), 
Frankhauser (1997)). Here we will first recur to another type of model, the Fournier dust, 
which shows however many similarities with the Sierpinski carpets. Indeed in both cases the 
fractal is generated by transforming subsequently an initially given figure, the initiator. In a 
first step, a construction rule is defined which generates a patterns consisting of a certain 
number of smaller replicates of the initially given figure. In the further steps, this rule is 
applied to each of these replicates, which we call “elements” of the fractal. The construction 
rule, called generator, defines three properties of the fractal object: 

- the  factor r by which the initial figure is reduced, 
- the number N of elements which are generated,  
- the position of the elements which however do not affect the fractal dimension of the 

object3 
Hence such fractals are based on an iterative construction principle. Figure 3 shows the first 
construction steps for a Fournier dust. The only difference between Fournier dusts and 
Sierpinski carpets is the position of the elements in the generator: in Fournier dusts all the 

                                                 
3 The position of the elements may change in course of iteration, if the lacunas generated in the previous iteration 
steps are not affected. 
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elements are disconnected, whereas in Sierpinski carpets all elements are connected (at least 
by one point) and form thus one unique cluster.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The example of figure 3 shows that Fournier dusts consist of a great number of isolated 
elements. Due to iteration the elements are not distributed uniformly on the given area; they 
form clusters, which are separated by empty lanes of different size: there exists a few number 
of large lanes and an increasing number of smaller and smaller ones. The relation between the 
number of lanes and their size follows a strong hierarchical law, which corresponds to a 
Pareto-Zipf distribution, well known in geography and economics (Tannier & Pumain, 2005). 
 
 
 
 
 
 
 

Figure 3: the iterative construction of a Fournier dust. We observe that the elements in 
the generator are disconnected. 

first step : the generatorthe initiator second step

Figure 4: Comparing two types of generators of Fournier dusts with urban patterns: In the 
upper example the urban pattern consists of terraced houses forming blocks of houses, 
surrounded by street. This main feature reappears in the fractal. In the other example the 
buildings are more detached what has inspired to propose another type of generator. 
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In order to illustrate that Fournier dusts are rather well adapted to illustrate typical features of 
urban patterns we have in Figure 4 compared two other Fournier dusts in second iteration 
with real world urban patterns. 
 
2. From border to envelope using fractal geometry 
 
Let us now focus on the question whether it is possible to apply the concept of border and of 
envelope to such an object and how these two concepts may be linked. 
 
2.1 The borders of a Fournier dust: what changes and what remains at each 
iteration step? 
 
Considering one given step of iteration, it seems easy to identify the boundaries of a fractal 
object: they correspond to the contours of the elements, which are squares in our examples. 
But in course of iteration the borders change, as the elements change themselves: on the one 
hand the number of elements is multiplied by N at each step and increases therefore according 
to a geometric series. Hence, for a given step n, the number of elements Nn is: 
 

Nn = N n 

 
On the other hand, at each step the size of the elements is reduced by the factor r and thus the 
base length of the elements ln decreases according to a geometric series, too: 
 

ln = rn ⋅  l0 
 
Assuming that our elements are square-like, the boundary length of one element would be for 
a given iteration step n: 

pn = 4 ⋅ ln = 4 ⋅ l0 ⋅ rn 

 
and thus would tend to zero for n → ∞:  
 

limn→∞ pn = 0 
 
This may be understood by the fact, that the iteration generates for n → ∞ a set of isolated 
points, which are concentrated in a multitude of clusters. Thus, the boundary of a single 
element vanishes. Considering all the elements constituting the studied form, we can define 
the length of the cumulated boundaries Pn as following:  
 

Pn = Nn ⋅ pn = 4 ⋅ Nn ⋅ ln= 4 ⋅ l0 ⋅ N n ⋅ rn = 4 ⋅ l0 ⋅ (N ⋅ r) n 

 
Thus three cases may be distinguished 

- N ⋅ r > 1 ⇒ the cumulated perimeter Pn diverges 
- N ⋅ r = 1 ⇒ the cumulated perimeter Pn is constant 
- N ⋅ r < 1 ⇒ the cumulated perimeter Pn converges to zero 

 
Hence, even if the concept of border is delicate to handle for fractal forms like Fournier dusts, 
it is although possible to define a border for each iteration step. 
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The notion of fractal dimension, presented in details in multiple papers (e.g. Mandelbrot 
1982) allows however introducing a measure, which characterizes the borders by one unique 
value for all iteration steps. For constructed fractals like that of figure 3 the fractal dimension 
D of the fractal object may directly be linked to both the parameters N and r by means of the 
relation 
 
     … What yields        N =  r -D 

 
 
This fractal dimension is called self-similarity dimension. Fractal dimensions allow relating 
the number of elements Nn to the size ln of the elements by the following relation:  
 

Nn ~ ln -D 

 
The fractal dimension D characterizes the non-uniform distribution in a fractal of the elements 
across scales. Dimensions close to D = 2 correspond to fractals where mass is nearly 
distributed homogeneously. Figure 5a shows an example of such a Fournier dust in second 
iteration. Since the free lanes are very small, their widths vary rather slowly in course of 
iteration, and hence the system of free space will not be very hierarchical. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The value D = 2 corresponds to a completely homogeneous distribution, which does not 
mean, that we have a uniform black surface. Figure 5b shows an example, which is not a 
generator of a fractal, but where we have just put squares of the same size together, separated 
by lanes of equal width. Since the squares are distributed in a uniform way, the fractal 
dimension of this geometric object is D = 2.  
 

r
ND

log
log

−=

(a) (b) 

Figure 5: (a) A Fournier dust in second iteration which resembles to that of figure 1. 
However in this example, the width of the lanes doesn’t vary much from one step to the 
next one. Hence, the fractal dimension would be close to D = 2. (b) A completely uniform 
pattern, without any hierarchy: all the lanes have the same width and thus the fractal 
dimension is D = 2. 
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The other limit case corresponds to an isolated point, which has of course the fractal 
dimension D = 0. Intermediate values correspond to situation where the distribution of the 
lane width is more or less hierarchical.  
 
We have seen that the usual perimeter lengths pn and Pn vary according to the considered 
iteration step. By recurring to fractal dimension, we may define a generalized perimeter length 
P which is the equivalent to Pn but which remains constant all over the iteration steps:  
 

P = Nn ⋅ ( pn )D = (4 ⋅ l0 ) D⋅ N n ⋅ rDn = (4 ⋅ l0 ) D⋅ (N ⋅ rD) n = (4 ⋅ l0 ) D 

 
… where we have used the relation  N = r –D. 
 
In fact, P is the perimeter length of the initiator of the considered fractal form (i.e. the initial 
square in the figure 3). Hence the Fournier dust may be completely characterized by both the 
constant parameters P and D. In the following we will get aware, that these parameters allow 
linking the notion of border to that of envelope to which we will come back now. 
 
2.2 Generating the envelope 
 
Since all the elements of a Fournier dust are disconnected, defining an envelope seems 
difficult – at least from the point of view of Euclidean geometry. However, we will see that 
the iterative nature of fractal geometry will help us to introduce this notion and to visualize 
the envelope according to a clearly defined procedure. For this aim we consider first the 
Fournier dust of figure 3 for which we have represented the first and second step in figure 6a 
and 6b. The figure 6a corresponds to the generator. The width of the free lanes λ1 is in this 
example the same as the base length l1 of the elements (Figure 6b). We put now at a given 
iteration step i on each element another square, centred on the element (figure 6c and 6d). In 
measure theory, such a procedure is called “covering” a structure by test elements of size ει  
The test elements of figure 6c are squares whose base length is just ε1 ≡ l1’ = 2 l1. Then each 
of the new squares touches its neighbours and we have now one unique cluster. Hence it is 
possible to define an envelope for this new object: it is just the exterior perimeter of the four 
squares, which form a cluster. The total perimeter length of this cluster is P1’ = 16 l1’. 
 
The figure 6d shows the same method applied to the next step. We observe that now 4 
disconnected clusters are obtained if we choose for the covering squares a size, which 
eliminate just the newly generated smallest lanes between the squares. We may again cover 
these clusters by one unique larger square which touch just one another (dashed line) and 
which is just identical with the square with fat borderline of figure 4c. Thus, we come 
progressively back to the envelope we found for the first step of covering.  
 
We should now emphasize that the envelope we constructed step by step, may be identified as 
iteration steps of another Fournier dust. The progressive construction of this Fournier dust is 
illustrated in figure 7. The only difference between the two generators is the position of the 
elements. In the first case we considered, the generator consists of four squares of base length 
l1 = r ⋅ l0 , placed in the corners of the initial square (cf. figure 6a), whereas in the second case 
the four generated squares of length l1’ = r ⋅ l0’ are placed in the centre of the initial square 
and form a square-like cluster (cf. figure 7). The length of the initial square l0’ is again twice 



11 

the length l0: l0’ = 2 l0. This large square is indicated on figure 6c and 7. Using the relation 
between l1 and l1’ we obtain; 
 

l1’ = 2 l1 = 2 r ⋅ l0 = r ⋅ l0
’ 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus we find the same scaling relations for l1’ and ll . On the other hand we have already seen 
that the number of elements N is identical, too, for both the Fournier dusts. Hence the both 
Fournier dusts have the same fractal dimension, which leads to conclude that generate an 

(d) 

(a) 

(c) 

l0 

l1 

l0’ 

l1’ 

(b) 
λ1 

λ2 l1 
l2 

Figure 6: (a) and (b): The two first steps for generating the Fournier dust of figure 1. 
The widths of the lanes generated are indicated. (c) and (d): The covering of the 
Fournier dust of figure 1 by another Fournier dust. This second dust covers at each step 
just the lanes generated at the same iteration step for the first dust. The respective lengths 
of the elements are indicated, where the prime refers to lengths of the second dust. 
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envelope using the covering method appears as being a consistent method for delimiting 
urban areas. 
 
The presented approach generates two different kinds of information: 
• the notion of fractal dimension allows to describe the progressive passage from border to 

the envelope. The fractal dimension D characterizes how the cumulated perimeter Pn 
changes in course of iteration. 

• the extraction of the envelope allows defining a limit of the urban cluster entirely based on 
a morphological approach. 

 
The form of the generated envelope is a very simplified approximation of a structure, which 
loses finally its multi-scale properties when coming back to the initiator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Real urban patterns are of course more complex structures than the discussed Fournier dusts: 

• Even if we assume a rather hierarchical organisation for the streets network of a city 
centre, we may not expect that this spatial system follows such a strong scaling 
behaviour as that of the lanes in the presented Fournier dusts. 

• In suburban zones, free space separating individual houses do not follow a strong 
hierarchy.  

• In the presented Fournier dusts, all the elements belonging to a given iteration step 
have strictly the same size, which is not true for buildings in a town.  

 
Hence, for extracting the urban envelope it does not seem possible to apply the same covering 
method as previously described. This incited us to recur to an alternative procedure, the 

Figure 7: the iterative construction of the second Fournier dust (cf. text), which covers at 
each step the dust of figure 4a, b in that way, that the smallest lanes disappear (cf. text 
and figure 4). 
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dilation method, for generating the envelope: when starting from a given iteration step we 
dilate stepwise the square-like elements until these dilated squares just touch their 
neighbouring dilated elements4. When applying this method to the second iteration step of the 
Fournier dust of figure 6 we obtain the situation represented in figure 6d: at the bottom at left 
we have shown how such a dilation works; finally the four dilated squares will form bigger 
squares, which are identical with that ones obtained by covering.  
 
By going on with dilation, we obtain again the unique big square, when the four remaining 
squares join each other. Thus, we come back to the envelope we found for the generator using 
the covering procedure. Finally we introduced covering just in order to obtain a coherent 
approach for generating the envelope and for showing the possibility to describe the changes 
of the boundaries across scales by means of fractal dimension.   
 
Let us give some details on the dilation procedure. We should be aware that after i dilation 
steps the perimeter length p(k)

i of a given cluster k (a square in the example of figure 4) has 
increased with respect to its initial length p(k)

0 . For a simple situation like that of the squares 
of figure 4, we may easily verify the relation  
 

p(k)
i  =  p(k)

0 + 8 ⋅ i 
 
This hold too for the cumulated length Pi , which increases in a linear way with the dilation 
step i: 
 

 
 
 
K is the total number of clusters. When reaching the step where neighbouring clusters touch, 
the lanes separating these clusters disappear and thus simultaneously the borderlines. Then 
and the cumulated length Pi will decrease abruptly. When considering situations like that of 
figures 4d and 4c, we get aware that the emergence of big clusters consisting of 4 smaller 
ones reduces the total perimeter length by the amount ν p(k)

i where ν is the number of square-
like clusters which have been generated. We may conclude that such sudden decreases of Pi 
correspond to relevant steps for the emergence of the envelope. 
 
From a morphological point of view, the considered example is of course very simple. Thus 
we will tackle with a more complex Fournier dust, represented in figure 6. The initial figure is 
one more time a square. The generator consists of N = 17 squares and the reduction factor r is 
slightly inferior to 1/5 (figure 6a). This allows constructing a generator where lanes of width 
λ1 separate the elements in the central part. We obtain for the lane width 
 

λ1 = ¼ ( l0 - 5 ⋅ l1 ) = ¼ ( 1 - 5 ⋅ r ) l0 
 

                                                 
4 The dilation method was introduced by Minkowski who used it for exploring then scaling behaviour. More 
recently the so-called “mathematic morphology” recurs to dilation for identifying changes in spatial organisation 
(Serra J. 1988, for a geographical application cf. e.g. C. Voiron-Canicio 1997). Let us emphasize that in our 
paper dilation is just introduced for replacing covering and for extracting boundaries. 
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In figure 8a the elements are again covered by squares, which just allow eliminating the small 
lanes of width λ1. The length of base of the surrounding squares is then l1 + λ1 and we obtain 
one unique cluster, the boundary of which may again be considered as the envelope. 
However, we see that in this example the envelope is not identical with the initial figure, 
which is a square: in this case, the minimal covering does not generate the initial figure. 
This can be understood by observing the distribution of free spaces in the generator. In our 
first example (cf. figure 6), the only free spaces were the lanes separating the four squares. 
These lanes had all the same width λ1. In the present example (cf. figure 8), this is no longer 
the case: by creating large free squares in the periphery of the generator, two scales of lacunas 
have been introduced. The proposed covering eliminates the smallest lacunas. 
 
The presence of lacunas of different size influences also the dilation procedure. In the 
example presented on the figure 6, the dilation generated squares at each iteration step. This is 

(b)

(c) 

Figure 8: the generator (a) and the next 
iteration step (b) of a more complex 
Fournier dust. The covering of the 
generator is indicated in both the 
figures. Figure (c) shows the structure 
obtained by dilating such as the largest 
lacunas – those of the generator – just 
disappear. We see that the figure is not
the same as that of covering 

(a)

l1 λ1 
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no longer the case for the Fournier dust of figure 8. We have progressively dilated the second 
iteration step of the Fournier dust (figure 8b) just until neighbouring clusters join each other 
and one unique cluster appears (figure 8c). This iteration step corresponds to the situation 
obtained by covering in figure 6b, but the results are quite different: due to the fact that free 
spaces separating neighbouring elements are not equal in the generator, the smaller lanes in 
the centre of the generator are filled up after few dilation steps, whereas the larger lacunas 
disappear only after further iteration steps. 
 
Finally, the stepwise procedure of dilation makes appear morphological particularities, 
peculiar to the scale under consideration: indeed, for step i, all details having a size 
ε < 2 i + 1, have disappeared. Thus, the obtained envelope is an approximation of the 
considered pattern at this scale. 
 
Let us now focus on the link between the two procedures we discussed, covering and dilation, 
and the notion of fractal dimension. We saw that in the first example, that of figure 6, we 
could interpret the covering procedure as the iterative construction of another Fournier dust, 
based on the same parameters N and r than the original one. Hence the fractal dimension of 
the obtained envelope was the same as that of the original Fournier dust. This logic of 
covering corresponds to the method proposed by Hausdorff and Besikovich for determining 
the fractal dimension of a structure (Mandelbrot 1982). For fractals constructed by means of 
an iteration procedure, like the discussed Fournier dusts usually the Hausdorff-Besikovich 
dimension is identical to the self-similarity dimension we introduced previously (see page 9), 
but this may not be the case for more complex structures (Mandelbrot, 1982). 
 
Contrarily to covering, dilation does not provide a way for constructing an associated fractal 
having the same self-similarity dimension. Nevertheless, dilation is directly linked to the 
notion of fractal dimension too. Let us remind that Cantor, Minkowski and Bouligand 
recurred to dilation for determining fractal dimension (Mandelbrot, 1982). For this aim, they 
referred to the fact that an isolated point would be enlarged by dilation to a square of surface 
ε 2 = (2 i +1)2 at step i. They determined for each dilation step i the filled up surface S(i) and 
divided that surface by ε 2. Thus they obtained just the number of squares N(ε) of size 
ε required to cover all points of the structure at this scale.  
 
 
 
A fractal relation links the number of squares N(ε) to the size of the reference square ε  : 
 
 
 
 
2.3 From Fournier dusts to Sierpinski carpets 
 
According to the previous discussion, we dilated stepwise the built-up surface of urban 
patterns (Figure 9). We get aware that, in many cases, the aspect of the patterns changed 
fundamentally after few dilation steps: as soon as the small streets and courtyards disappear, a 
reduced number of rather important clusters emerge, which have however irregular borders. 
Within these borders, we observe however empty lacunas of different size. This incites us to 
modify our fractal reference model in order to complete our insight into urban envelope. We 
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come back to one model we used in a couple of previous papers as references for 
characterizing urban patterns, Sierpinski carpets (cf. e.g. Frankhauser 1994). The figure 9a 
reminds the aspect of the Sierpinski carpet. 
 
As pointed out before Sierpinski carpets and Fournier dusts are constructed according to the 
same principle. However with respect to the question of the envelope, there exists a 
fundamental difference between the two types of fractals: since a Sierpinski carpet consists of 
a unique cluster at all scales, border and the envelope cannot be distinguished, contrarily to 
Fournier dusts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d)

Figure 9: Extracting the outlines of a town by dilation of the built-up area (a). Figure (c)
shows all the outlines, figure (d) shows the outline of the main cluster. 

(a) (b) 

Figure 10: the Sierpinski carpet (a) consists of one unique cluster whereas the hydrid 
Sierpinski carpet consists of a series of clusters (b) 
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Figure 10 shows that both the models, Fournier dusts and Sierpinski carpets, may be 
combined. Such structures remind more the morphological aspect of urban patterns. We call 
this type of fractal form hybrid Sierpinski carpets. 
 
Such hybrid structures show a particular type of hierarchy which exist neither in Sierpinski 
carpets nor in Fournier dusts: the generator consists of one important cluster in the centre and 
four isolated elements in the corners. In course iteration an increasing number of smaller and 
smaller clusters are generated in the vicinity of clusters generated at previous steps.  
 
Let us now focus on another feature of the hybrid Sierpinski carpet which is this time linked 
to the central cluster of the generator which consists of N(Sc) = 9 connected elements and 
forms thus itself the generator of a Sierpinski carpet. These elements are placed in a cross-like 
way and due to this arrangement the boundary of each cluster becomes more and more 
tortuous in course of iteration. Figure 11 shows the lengthening of the boundary for a part of 
this Sierpinski carpet.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As for all Sierpinski carpets this subsequent lengthening of the boundary is characterized by 
the self-similarity dimension5, which may defined in the usual way: 
 
 
 
 
Beyond this dimension it is possible to define a self-similarity dimension which refers to the 
whole hybrid Sierpinski carpet by referring to the total number of elements generated N(hSc). 
E.g. in the example of figure 8b the total number of elements of the generator is N(hSc) = 13 
and the reduction factor is r= 1/5. At each iteration step, 13 replicates of the generator are 
created, which generate either new isolated clusters or belong to already existing ones. 

                                                 
5 At each step the base length of the square-like elements is reduced by the factor r = 1/5, and the number of 
elements is multiplied by N(Sc) = 9. Due to the specific arrangement of the elements the lengthening of the 
boundary may slightly be inferior to that obtained by multiplying by the factor N(Sc). However mathematically 
this may be neglected since for Sierpinski carpets boundary and surface tend to the same limit set (Frankhauser 
1994) and this is the reason why their fractal dimension is the same. 

Figure 11: The upper part of the central cluster of figure 10. The dashed borderline 
corresponds to that of the generator and the fat line to that of the second iteration step. 
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According to the usual definition the self-similarity dimension is defined in the following 
way: 
 
 
 
Hence this dimension D(hSc) globalizes information about the two different morphological 
phenomena enounced, the subsequent fragmentation of the fractal due to the generation of an 
increasing number of smaller and smaller clusters, and the just discussed lengthening of the 
boundaries of these clusters. We may say that this dimension characterizes the complexity of 
the structure.  
 
Thus both the dimensions D(hSc) and D(Sc) give complementary information about the 
boundaries: the first one characterizes the global complexity, the second one the tortuous 
shape of the clusters’ boundary. 
 
As for all constructed fractals it is possible to link for each iteration step n the numbers of 
elements to their size ln = rn l0. In the present case we obtain two such laws, one for the total 
numbers of elements Nn

(hSc), and another one for the number of elements Nn
(Sc) belonging to 

the Sierpinski carpet6: 
 

Nn
(hSc) ~ ln -D(hSc) 

 

Nn
(Sc) ~ ln -D(Sc) 

 
It is now possible to eliminate the length of the elements ln common to both the relations, and 
to obtain thus a relation linking the total numbers of elements to that one of the Sierpinski 
carpet:  
 
 
 
This relation links the complexity described by D(hSc) to the lengthening of the boundaries, 
described by D(Sc). Hence it expresses just the supplementary contribution to complexity 
which is not due to lengthening the boundary. However we know that this supplementary 
contribution to complexity is just due to the emergence of the clusters which causes an 
increasing fragmentation of the structure in course of iteration. Thus we may call index of 
fragmentation the fraction φ = D(hSc) / D(Sc).  
 
2.4 Extracting the envelope of hybrid Sierpinski carpets 
 
Like for complex Fournier dusts, as for that one of figure 8, it is difficult to extract the 
envelope of hybrid Sierpinski carpets by means of covering: on the one hand the elements are 
adjacent in the clusters, on the other hand the different clusters are separated one from the 
other by empty space. However, the dilation allows to join progressively the closest clusters 
and to generate envelopes on different scales. In this case presented on the figure 12, the final 
envelope is a square which corresponds to the position of the elements in the generator, where 
the isolated squares are put into the corners of the square-like initiator.  

                                                 
6 Mathematically spoken the Sierpinski carpet is a fractal subset of the hybrid Sierpinski carpet. 
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The figure shows that in course of dilation more and more coarse-grained approximations of 
the structure occur and we observe the emergence of larger and larger clusters. However we 
rediscover the typical features of this type of fractal structure: there exist still clusters of 
different size until the last steps where only one solely clusters subsists. This reminds typical 
morphological properties of real world urban patterns as shown on figure 9c.  
 
In the next chapter we focus on the way how we may concretely apply this concept to real 
world patterns and what are the measures of interest for describing the morphology of urban 
boundaries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Measuring the urban boundaries 
 
3.1 The general methodology of analysis 
 
The previous discussion made evident that we may expect different phenomena coming into 
play when trying to extract by means of dilation the urban envelope and to measure the 
morphology of the urban border and envelope. As pointed out, after little dilation steps, urban 

Figure 12 : Different steps of dilation of the hybrid Sierpinski carpet of figure 8 b (above) 
and the extracted boundaries which become finally the envelope (at the bottom, on the 
right). The central figure above corresponds to the generator of this fractal. 
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patterns tend to show features reminding hybrid Sierpinski carpets since they consist of a 
certain number of clusters of different size, which have more or less tortuous borders (cf. 
figure 7b). In course of dilation the clusters join progressively neighbouring ones and finally 
one unique cluster should subsist. In our concept the boundary of this final cluster 
corresponds to that we called the envelope of the urban pattern. In principle this envelope may 
be smooth as in the example of  figure 12 but usually we may expect that this will not be the 
case for urban patterns since sprawling town are not contained by circular or square-like 
ramparts. We may even expect that like in the example of figure 2 the envelope has a tortuous 
form: there exist larger and smaller bays which enter in the build-up area. This reminds the 
example of figure 6, where the envelope of obtained for the dilation step which generated the 
unique cluster is still tortuous. Thus it seems of interest to measure the fractal behaviour of 
the envelope what reminds the early work done by P. Longley and M. Batty (1991).  
 
But the example of the hybrid Sierpinski carpet made also evident that the envelope is not the 
only relevant morphological property for studying boundary phenomena in urban patterns. 
Different topics turned out to be interest: 

1. The complexity of the pattern: even if the final envelope is smooth, the structure may 
be very complex on finer scales; it may consist of a great number of clusters of 
different size which have tortuous boundaries. The multi-scale aspect of this 
complexity is measured by the fractal dimension D(hSc). 

2. The morphology of the clusters’ boundaries: this could be described by the fractal 
dimension of the Sierpinski carpet D(Sc).  

3. The fragmentation index φ which characterizes the fragmentation due to the presence 
of an increasing number of smaller and smaller clusters. 

 
In constructed fractals, the fractal properties remain the same over the scales, thus the 
dimension values D(hSc) and D(Sc) are sufficient for characterizing the morphological 
properties. This may be different for real world patterns: perhaps there exist particular scales 
where the fractal behaviour of the extracted boundaries changes (e.g. the mentioned transition 
from a Fournier dust like pattern to a hybrid Sierpinski carpet). Thus it would eventually be of 
interest to analyse the fractal behaviour for different boundaries extracted in course of 
dilation. 
 
This incites us to suggest the following procedure: 

1. The given urban pattern is stepwise dilated and for each dilation step the boundaries 
are extracted, which form together the cumulated boundary.  

2. For each step the cumulated perimeter length and the number of clusters is determined 
and stored; 

3. The fractal dimensions of the cumulated boundary, as well as that of the different 
clusters’ boundaries are determined for each step. In practice it would be possible to 
determine the boundary dimension for all clusters; we may restrict to the most 
important ones. 

4. The dilation is stopped when a unique cluster occurs. In practice it turns out that we 
must be more flexible: going on with dilation until one very smooth cluster occurs 
may not be of interest and not traduce the reality. We will see that we may stop 
dilation when reaching a stable situation. 
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This procedure allows after having stopped the dilation to represent on a graphic the evolution 
of the border length and the number of clusters all over the dilation steps (cf. figures 12 and 
13). If the fractal behaviour would not change over iteration, we should observe for the 
cumulated boundary length a power law according to the relation 

 
Pn = Nn ⋅ pn ~ Nn ⋅ ln ~ ln

1-D 

 
In reality the mentioned passage from the Fournier dust to the hybrid Sierpinski carpet may 
disturb the regular decrease of the boundary length. If the structure follows fractal behaviour, 
we may expect a similar power law for the number of clusters. Indeed they should follow a 
hierarchical distribution law too, since they are generated by the iteration process. 
 
3.2 Applying the methodology to urban patterns 
 
For exploring urban borders end envelopes we should use detailed cartographic 
representations on the scale of buildings as it may be obtained from a GIS data base or 
eventually from certain topographic maps. The material source of the analyses is a raster 
image of an urban pattern. This image is composed of two types of pixels: black pixels for 
representing built-up areas and white pixels, which represent non built-up areas (free spaces).  
 
For realizing all necessary operations like dilation or measuring fractal dimension we 
developed in the last years a specific software package for analysing the fractal behaviour of 
urban patterns, called fractalyse7. It offers different tools as dilating images, extracting 
boundaries as well as a couple of methods to measure the fractal dimension of an image. All 
generated images (dilated patterns, boundaries) can be stored as well as all information 
concerning the fractal analyses realized. For a chosen sequence of dilation steps, the 
cumulated boundary lengths, as well as the number of clusters, may be calculated 
automatically and be stored.  
 
Hence in a first step the borders of the buildings are extracted and their fractal behaviour is 
analysed. Then the pattern is dilated. For this aim each occupied point is surrounded by a 
black border, the size of which increases at each step of iteration. At the beginning (non 
dilated image), the reference element is the pixel. During the first dilation, each pixel is 
surrounded by a border of one pixel width. Then, the reference element is a square of 32 pixels 
size. At the second iteration step, each pixel is surrounded by a border of two pixels width. 
The structuring element is then a square of 52 pixels size. This procedure is then repeated for 
further steps. As the size of the surrounding squares gradually increases, the details smaller 
than the size of the structuring element are overlooked. At each step the boundaries of the 
dilated clusters are extracted. 
 
For determining the fractal dimension of the boundaries there exist various standard methods. 
Several of these methods are implemented in fractalyse what allowed us to compare them and 
to test their pertinence. Recent investigations (De Keersmaecker et. al., 2003; Frankhauser 
2003; Frankhauser, 2004) made evident that one particular method, the correlation analysis, is 

                                                 
7 This software has been developed by Gilles Vuidel in the frame of the contractual work for the French Ministry 
of the Public Works. If you want more information about Fractalyse, please consult the website of the research 
team ThéMA: http://thema.univ-fcomte.fr, heading “Research teams” -> “City, mobility, territory”. 
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particularly reliable for analysing urban patterns, compared to other ones. This incited us to 
recur to this method8.  

 
For applying this method, each black pixel is surrounded by a square of a given base length ε 
and all black pixels lying within this square are counted. This allows to compute the mean 
number N(ε) of black pixels lying within a vicinity of e of each black pixel. Then the base 
length of the squares is enlarged and again the same mean number is calculated. This 
procedure is repeated for a large range of values ε. Thus we obtain a series of values N(ε) that 
can be represented on a Cartesian graph. The Y-axis corresponds to the number of counted 
elements N(ε)and the X-axis corresponds to the base length ε of the squares, with ε increasing 
from step to step. We call the graph N(ε) empirical curve. For a fractal, the relation 
N(ε) follows a power law. In order to establish a link between the empirical curve and the 
theoretical fractal relation, the next stage of the analysis is to fit the empirical curve with the 
theoretical one.  
 
However we should expect that an urban pattern is not a pure fractal. Hence it seems useful to 
introduce a generalized fractal relation. Preliminary tests realized with fractalyse made evident 
that is reasonable to use the following law: 

 
N(ε)  = a εD

 +  c 
 
Let us give an interpretation of the three parameters: 

1. D is the fractal dimension. 
2. a is the so-called prefactor which globalizes possible deviations from the fractal law. 

Such deviations may have various reasons: the presence of big non-build-up areas may 
disturb the fractal law even if we tackle with pure fractal structures, but in a real-world 
pattern there may be observed local deviations from fractal law (Gouyet).  

3. The parameter c allows a correct adjustment of the curve if it seems useful to 
distinguish several ranges of ε-values for which we estimate the fractal dimension 
separately. Indeed it may be observed that in many cases there exist ε-ranges for 
which the fractal behaviour is very stable, but for certain critical distances ε the shape 
of the empirical curve incites to suppose that the fractal behaviour changes. Then we 
may estimate the parameters for a low distance ranges and far distance ranges.  

 
In any case a non linear regression is used to find the power law which best fits the empirical 
curve9. 
 
When considering the dimension D(hSc) we may expect that the more there are buildings of the 
same size and the more they are distributed in a homogeneous way, the fractal dimension 
tends to a value close to D(hSc) = 2. When dilation reaches the limit of a unique cluster, the 
dimension usually drops down and tends to D(hSc) = 1, since now neither fragmentation nor the 

                                                 
8 Because the theory underlying the correlation analysis considers the simultaneous presence of two points at a 
certain distance, i.e. the mean distance between a pair of built-up pixels, the correlation dimension is a second 
order fractal dimension. In a multi-fractal theoretical framework, this correlation dimension should be extended 
to a series of three, four or more points.  
9 D is often estimated by using a double logarithmic representation of the power law but here it has been chosen 
to minimise the least square deviations by means of a non-linear regression 



23 

tortuous aspect of clusters’ boundaries subsist; the morphology of the envelope is rather 
smooth and is more or less a nearly linear, mono-scale object. The dimension D(Sc) the 
dimension will strictly measure the tortuous character of the boundary. Typical values will lie 
within the range 1 < D(Sc) < 1.5. 
 
3.3 Two examples of application 
 
We will now show how this concept could be applied to real world patterns. First we present 
the results obtained for an edge city of the metropolitan area of Stuttgart, Bietigheim-
Bissingen. This town is situated in the Northern part of the agglomeration and offers a certain 
number of amenities. It is well connected to the regional capital of Stuttgart by a pertinent 
suburban railway and is close to a highway exit. Moreover the northern hinterland is sparsely 
urbanized and offers good opportunities for leisure activities. On the other hand important 
shopping centres are established nearby. Since about 30 years this town has considerably 
grown. As shows the name it was constituted at the origin of two towns which grew both in 
direction of the railways station situated between the two historical centres. This explains the 
horse-shoe like shape of the urban pattern.  
 
On figure 13 we represented the extracted border from the original pattern as well as the 
boundary extracted after 15 dilation steps. Figure 14 shows the evolution of the length of the 
boundary across dilation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We observe that already after the first dilation step the length of the boundary decreases. This 
shows that fractal behaviour changes at the second step: for further steps the pattern looks 
more like a hybrid Sierpinski carpet than like a Fournier dust. The shape of the curve 
corresponds to a regular decrease of the boundary length as it is observed for hybrid 
Sierpinski carpets or even for Sierpinski carpets.  
 
The number of clusters decreases also in a rather regular way. However we see that after 15 
dilation steps there remain some isolated clusters in the hinterland of the town. Taking into 
account the shape of the pattern it doesn’t seem useful to continue with dilating until one 
unique cluster appears: the typical horse-shoe like form of the urban pattern would then 

Figure 13: The borders of the buildings of the town of Bietigheim-Bissingen, extracted 
from cartographic data. 
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disappear. This shows that indeed a more realistic criterion for stopping dilation would be a 
relative stability of the number of clusters. In this example such a situation is observed 
approximately at the 12th iteration step.  
 
The sequence of fractal dimensions which we have determined refers to the dimension D(hSp). 
We observe that the fractal dimension first increases, i.e. the smoothing due to dilation 
renders the cumulated boundary more homogeneous, small local clusters disappear 
progressively. Then the dimension decreases. This could us incite to think, that the cumulated 
boundary becomes more and more linear. However we must be aware that at the same time 
the number of clusters decreases dramatically (from 5707 at the beginning to 77 at the 10th 
dilation step) Thus dimension values of about 1.66 are still rather high for a topological linear 
object like boundaries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The quality of adjustment for the estimation of the fractal dimension remains better than 
0.9999 until the 10th dilation step. Experience shows that this is the lower limit for which we 
may assert that the adjustment is very pertinent. Thus we may conclude that for the range of 
dilations for which the adjustment is excellent, the fractal dimension D(hSp) varies finally in a 
rather small range. Hence the tortuous character remains rather stable in this range.  
 
Similar results have been obtained for other kinds of urban patterns as e.g. shown in figure 15. 
Rixensart is an outskirt of Brussels and shows a quite different type of spatial organisation: 
the urbanization is rather diffuse as in many Belgian cases (cf. De Keersmaecker et. al. 2003). 
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Figure 14: The results of the analyses obtained for Bietigheim-Bissingen (cf. text).  
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However the shapes of the curves show similar characteristics: the dimensions increase first 
and decrease for higher dilation steps. Let us emphasize that in this example the quality of 
adjustment remains better that 0.99999 all over the dilations. The dimension values, which 
vary in for the range of first ten steps between 1.74 and 1.78, are in general higher that those 
of the first example, what is reasonable: the Rixensart pattern is more homogeneous then that 
of Bietigheim-Bissingen. 
 
The number of clusters drops again down in a regular way and tends to reach constant values 
at about the 18th dilation step. The transition from the Fournier dust to the hybrid Sierpinski 
carpet occurs in this case at the 3rd/4th step. This may be due either to the particular data base 
(the size of a pixel may be different) or to the diffuse urbanisation.  
 
This fact that on the one hand D(hSp) seems to be restricted to rather small range for a given 
pattern and that on the other hand the values obtained for different patterns vary 
sufficiently   shows that the dimension D(hSp) seems to be a rather good descriptor for the 
multi-scale link between border and envelope. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Conclusion   
 
 
 
Delimiting urbanized areas is a difficult tool since urban sprawl generates more and more 
irregular settlement patterns. After having defined the notions of border and envelope, we 
have shown that by recurring to fractal geometry it is possible to develop a coherent concept 
of delimiting urbanized areas. Be recurring to the notion of covering a direct link may be 
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Figure 15: The results obtained for the analysis of Rixensart (cf. text) 
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established between the spatial distribution of buildings and the subsequent construction of 
the envelope. For this aim we start from the micro-scale of buildings and define a procedure 
which allows constructing stepwise larger and larger clusters of build-up areas for which the 
boundaries may be defined. 
 
For real patterns this logic is replaced by a progressive dilation. The boundaries extracted at 
different steps allow observing to what extend the morphology of these virtual boundaries 
changes or not across scales. For each step the morphology of the boundary may be explored 
by means of fractal analysis. Thus beyond of the construction of the envelope deepen insight 
about the spatial organisation of urban pattern is obtained. 
 
Further work should focus on clarifying if there exist for real world patterns morphological 
criteria the criteria for stopping dilation. Moreover it is intended to test to what extend the 
dilated patterns may be modified in order to conserve on the one hand the shape of the 
envelope generated, but to avoid on the other hand their “blown up” aspect which results of 
course directly from the procedure of dilating. This could help to improve the feature of the 
extracted envelope.  
 
Until now only few dilation steps has been considered for a larger set of towns10.  Of course it 
is intended to apply the method to a large set of settlement patterns and to study also the D(Sp)-
values for different dilation steps.  
 
4. Conclusion   
 
Delimiting urbanized areas is a difficult tool since urban sprawl generates more and more 
irregular settlement patterns. After having defined the notions of border and envelope, we 
have shown that by recurring to fractal geometry it is possible to develop a coherent concept 
of delimiting urbanized areas. Be recurring to the notion of covering a direct link may be 
established between the spatial distribution of buildings and the subsequent construction of 
the envelope. For this aim we start from the micro-scale of buildings and define a procedure 
which allows constructing stepwise larger and larger clusters of build-up areas for which the 
boundaries may be defined. 
 
For real patterns this logic is replaced by a progressive dilation. The boundaries extracted at 
different steps allow observing to what extend the morphology of these virtual boundaries 
changes or not across scales. For each step the morphology of the boundary may be explored 
by means of fractal analysis. Thus beyond of the construction of the envelope deepen insight 
about the spatial organisation of urban pattern is obtained. 
 
Further work should focus on clarifying if there exist for real world patterns morphological 
criteria the criteria for stopping dilation. Moreover it is intended to test to what extend the 
dilated patterns may be modified in order to conserve on the one hand the shape of the 
envelope generated, but to avoid on the other hand their “blown up” aspect which results of 
course directly from the procedure of dilating. This could help to improve the feature of the 
extracted envelope.  

                                                 
10 In Frankhauser (2003) the dimensions D(hSp) and D(Sp)  of a certain number of towns are compared which refer 
however to boundaries extracted after few dilation steps. 
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Until now only few dilation steps has been considered for a larger set of towns11.  Of course it 
is intended to apply the method to a large set of settlement patterns and to study also the D(Sp)-
values for different dilation steps.  
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