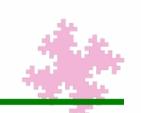


Linselles

Pierre Frankhauser Théma Université de Franche-Comté France

Ronchin-Seclin

8 - B



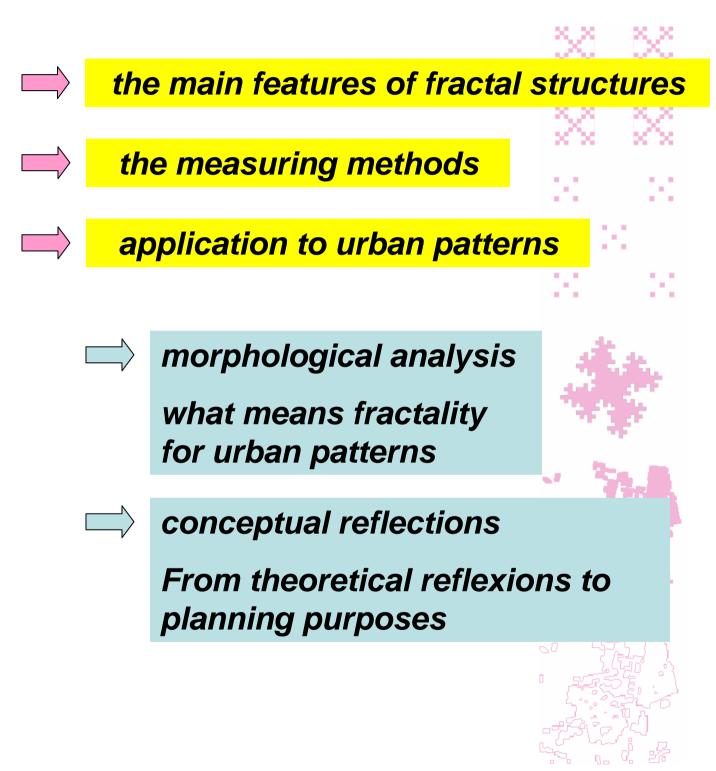
the fractal approach is first a geometric approach and not measuring method

the fractal approach is mainly an approach for spatial modelling allowing to introduce methods for analyzing forms

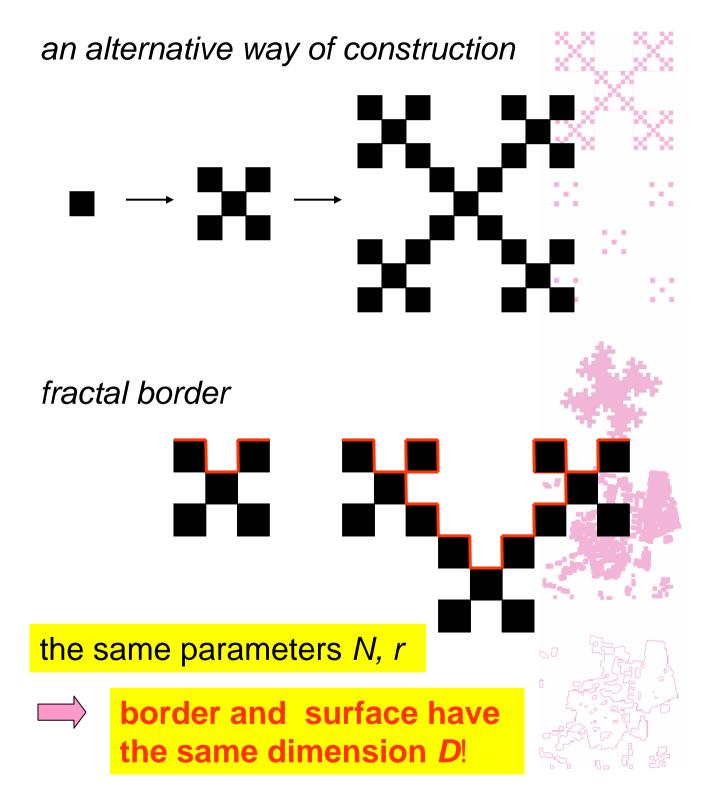
> close interaction between modelling and mesuring

measuring methods imitate modelling

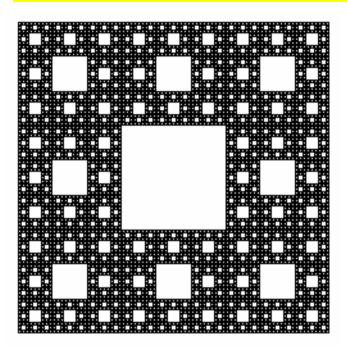
comparison between spatial models and empirical structures

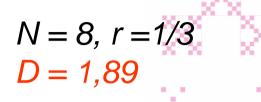


how to construct a fractal generation by iterative mapping example : a Sierpinski carpet E initiator generator $N = 5, \ \varepsilon = 1/3 \ L = r \ L$ 1st step 2nd step 3rd step $\begin{array}{c|c} N_1 = N \\ \varepsilon_1 = r L \end{array} \quad \begin{array}{c} N_2 = N^2 \\ \varepsilon_1 = r^2 L \end{array} \quad \begin{array}{c} N_3 = N^3 \\ \varepsilon_1 = r^3 L \end{array}$ two linked geometric series $\varepsilon_n = r^n L$ $N_n = N^n$ eliminate n fractal law $N_n = \varepsilon_{n^{\dagger}}^D$ $\log N$ fractal dimension $\log r$



every fractal shows a spatial hierarchy, at least for the system of lacunes ...





hierarchy of lacunes

... but a hierarchy of clusters may be generated, too

ж <u>ж</u> ж	₩ ₩ ₩ ₩1₩₩	* # *
* * * ***** * * *	;;::∯::: :	∷:∄∷:
* # *	# # # # # #	* # *
* * *** *		****
*********	'-'-'-'-'- . .	······································
* * *** *		ж. ж. ж.ж.
******		# ** # *
* * ** *		
* * * **		* * *

central cluster: N = 9, r = 1/5D = 1,37

total fractal: N = 13, r = 1/5D = 1.59

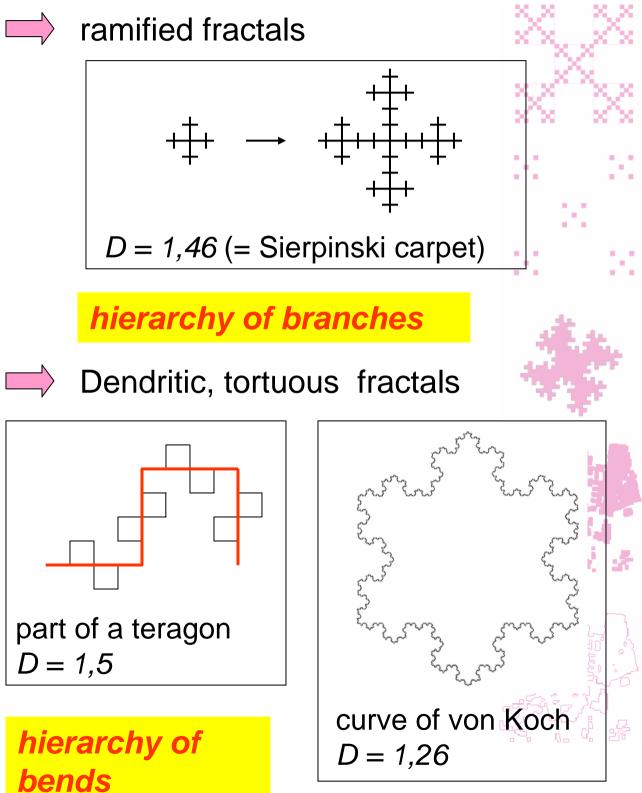
the spatial hierarchies are generated by the iteration

they follow strictly a well-defined hyperbolic distribution law:

 $N(\varepsilon) \sim \varepsilon e^{i\omega}$ scaling exponent, eventually different from D number size of lacunes

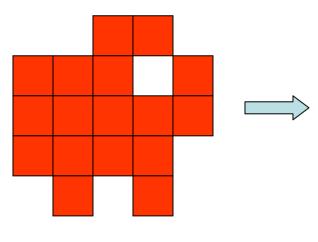
Pareto-Zipf distribution

fractals of linear topography



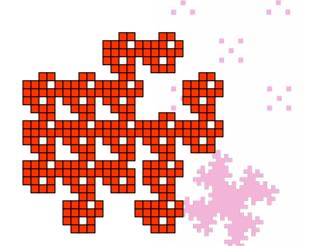
link with real world situation: the random fractals

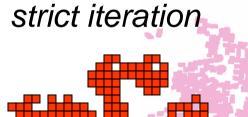
A less symmetric generator ...



... and a more arbitrary position for the following steps

the already generated lacunes must be respected !!





2nd step

a fractal is neither dense nor diluted, it is more or less contrasted

both uniformity and concentration are limit cases

" irregular" structures correspond eventually to a particular – fractal – order principle

such structures may be quantified

Nicolis: "a very simple model for complexity"

the information given by the fractal dimension:

surface : degree of mass concentration across the scales (e.g. build-up mass)

spatial hierarchy

- **D** = 0 concentration in a solely point
- D = 2 uniform mass distribution
- **D** low highly hierarchised (contrasted)

D high low hierarchy

network: degree of accessibility / ramifications

D low very hierarchised, unequal accessibility (contrasted)

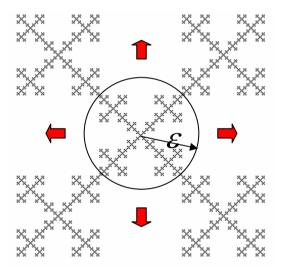
D high low hierarchy \rightarrow uniform

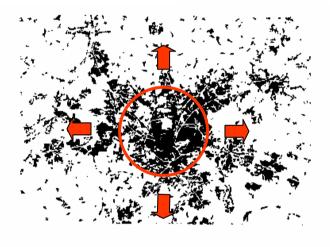
border : D > 1 tortuous/dendritic

Information about the surface occupation:

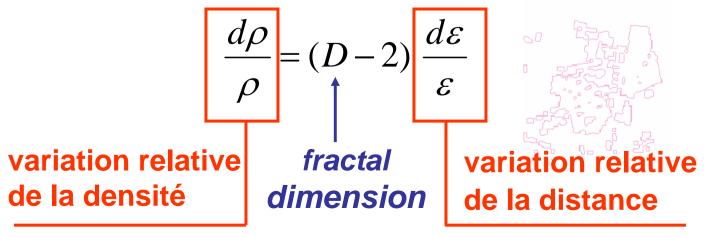
measures the decrease of concentration and the contrast in a pattern

build-up surface : mesures the radial dilution of builp-up mass in the vicinity of a building

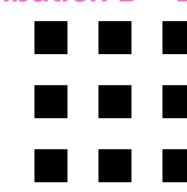


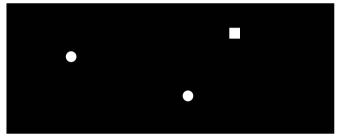


relative change of density :



uniform distribution D = 2





lacunes of same size

Brussels Individual housing estate D_{cor} = 1.95

Brussels pericentre dense D_{cor} = 1.97

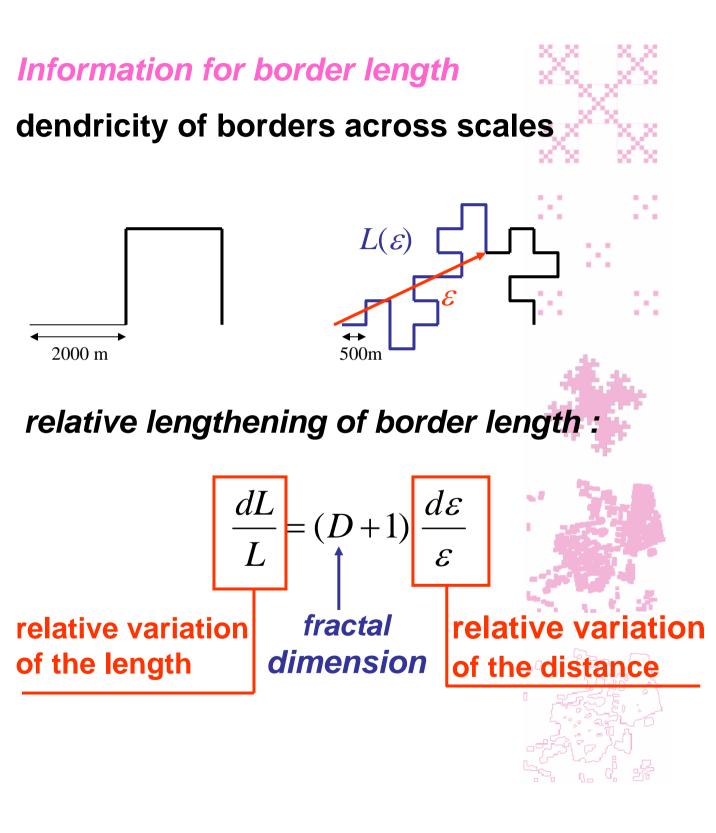
Contrasted patterns: lower dimension values

* * *	* * *	* * * ****** * * *
* # ** #		# ** # *
******	**************************************	# ## # #
* * * *****	***	* * *

Contrasted fractal D=1.59

Montbéliard Valentigney D=1.75

Cergy-Pontoise D=1.73



N N N

The measuring methods

The measuring methods

the general procedure for measuring fractal behaviour

the empirical structure is interpreted as ""random fractal"

no knowledge about a construction rule

general method

basic principle:

Iteration step nmeasure ε_n

substituted by

progressive variation of measure $\boldsymbol{\epsilon}$

 $N(\varepsilon) \sim \varepsilon^{-D}$

linear relation

fractal relation :

$$N_n \sim \mathcal{E}_n^{-D}$$

substituted by

bi-logarithmic form

 $\log N(\varepsilon) = const - D \log \varepsilon$

the measuring methods:

- 🔿 radial analysis (local approach)
- analysis of Richardson (local approach)
 - correlation analysis (global approach of second order)
 - dilation analysis (global approach of first order)
 - grid analysis (global approach of first order)
 - box counting (global approach of first order)
 - Gauss convolution analysis (global approach of first order)
 - variogramme (global approach of first order)

... and each other multi-scale method

The measuring methods

local information

radial analysis

no data transformation

© P. Frankhauser ThéMA Besançon

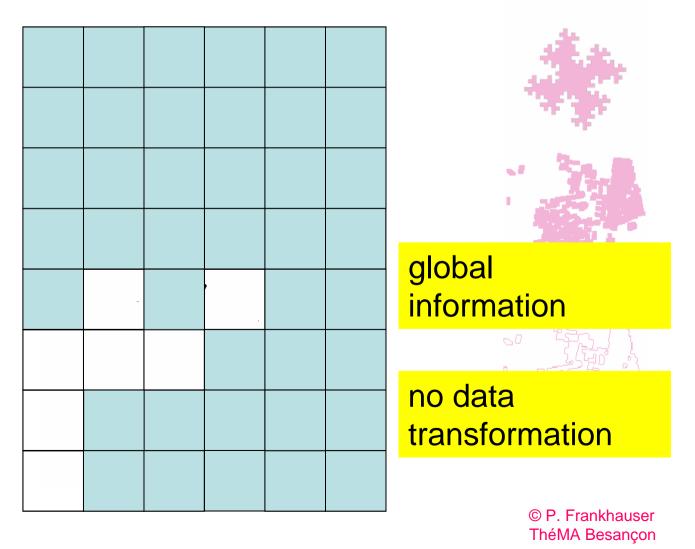
 $N(\varepsilon) \sim \varepsilon^D$

grid analysis

covering the structure by a grid

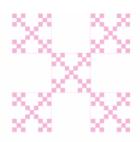
- \implies varying the size ε of the grid elements
 - counting the number $N(\varepsilon)$ of elements containing at least one occupied site

fractal relation : $N(\varepsilon) \sim \varepsilon^{-D}$

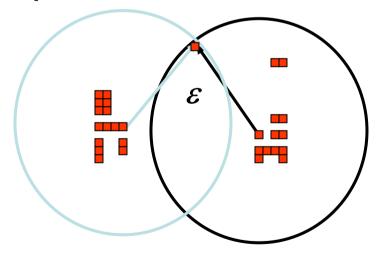


correlation analysis

the same logic as the radial analysis, however :



- the counting procedure is realised at each occupied site.
- Computing the mean number $N(\varepsilon)$ of occupied sites for each distance ε (number of "correlations")



global information

no data transformation

© P. Frankhauser ThéMA Besançon

dimensio

ordre

de second

Dilation analysis

stepwise dilation of texture
smoothing procedure

stepwise loss of details

texture

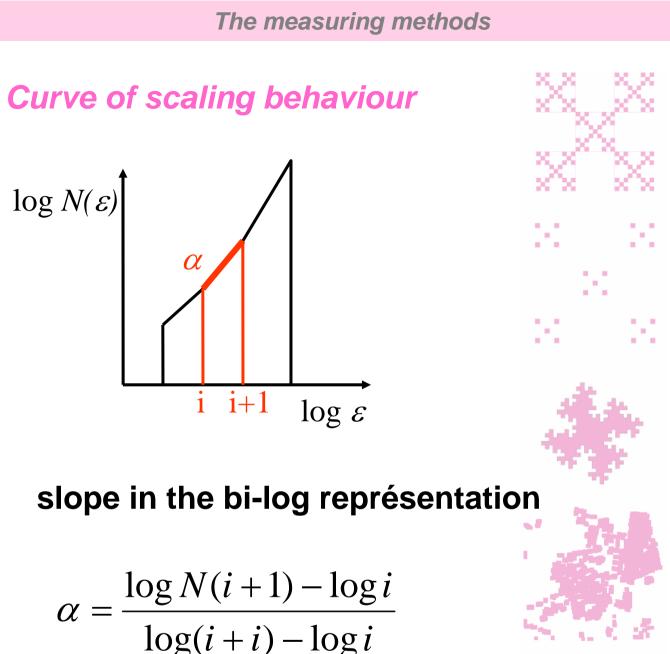
 $N(\varepsilon)$: Number of squares of size ε nessary to cover the black surface

global information

data transformation

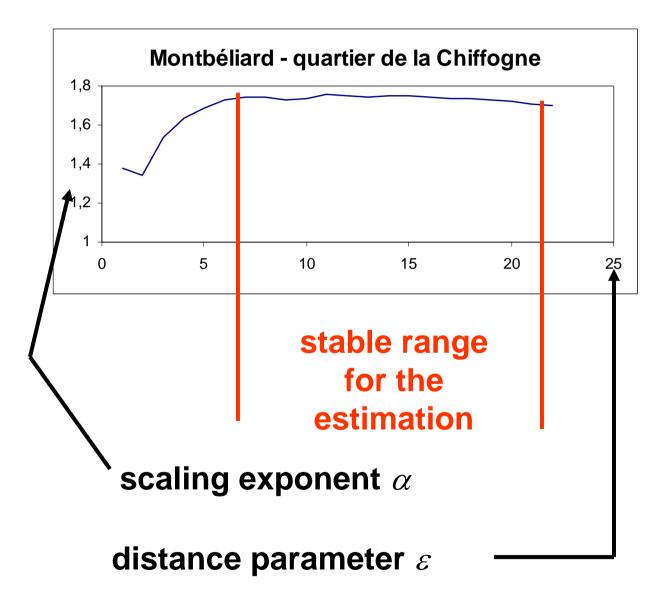
The measuring methods

type of analysis	local global	border L surface A	reliability and application
radial	L	L and A	good specific logic
grid	G	L et A	not reliable
box counting	G	L et A	very reliable, realisation difficult
correla- tion	G	L et A	very reliable
dilation	G	L et A	L : not reliable A : with caution
gaussian convo- lution	G	L	L : good A : difficult



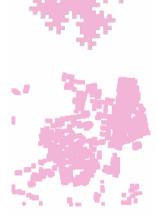
good indicator for identifying the ruptures in the fractal bahaviour

Example of a curve of scaling behaviour for a correlation analysis

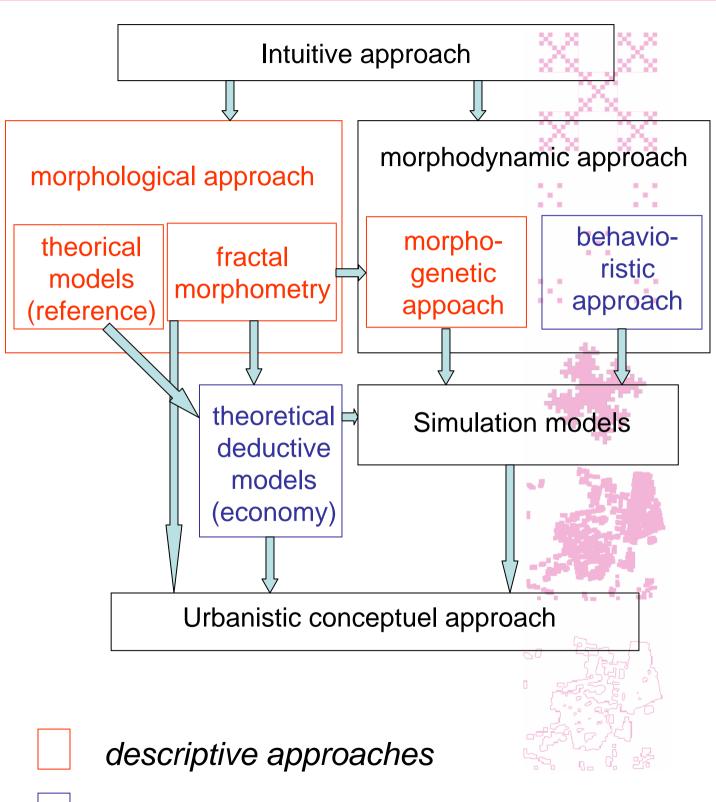


Urban patterns and fractality

8 - B

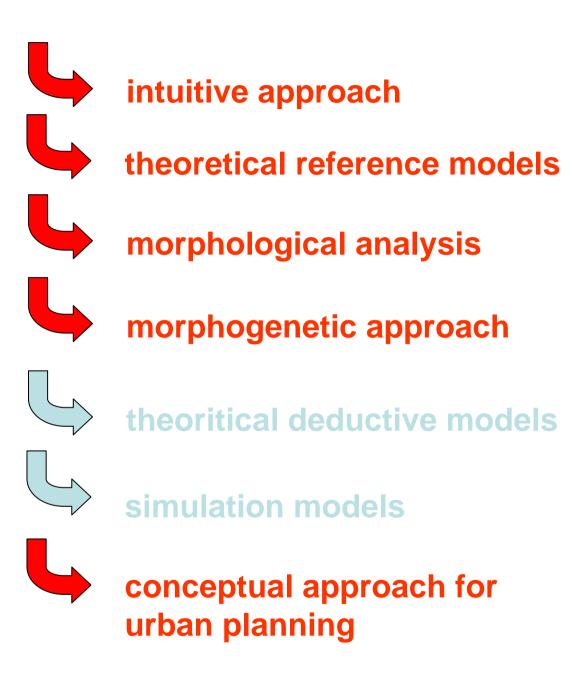


Urban patterns and fractality



explicative approaches

Urban patterns and fractality

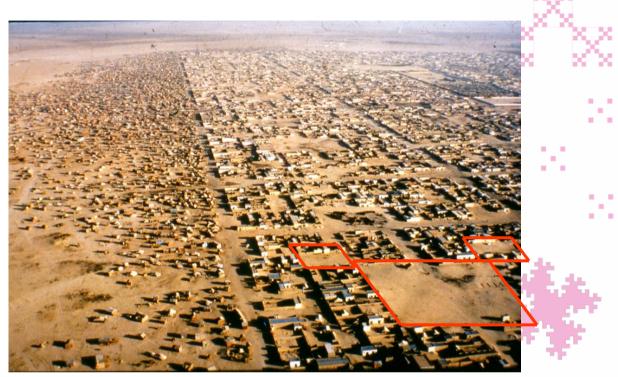


An intuitive Approach

51

Urban patterns and fractality

hierarchies in urban space



		1080			
· · · · · · · · · · · · · · · · · · ·				•	
0.00	00.00			0.00	00.0
H. H	H. H				H.H
6 66					797 74
		2323			
		080			
		101 C	10 DE		
		10110			

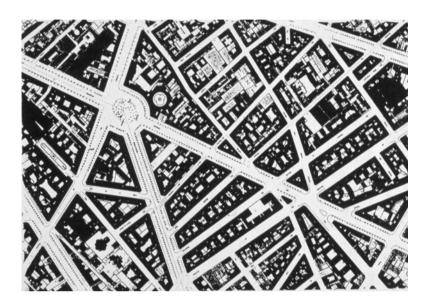
Nouak Chot <mark>and</mark> Sierpinski carpet

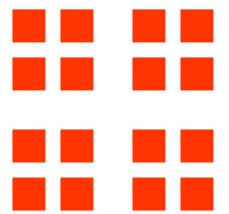
....

z.

Urban patterns and fractality

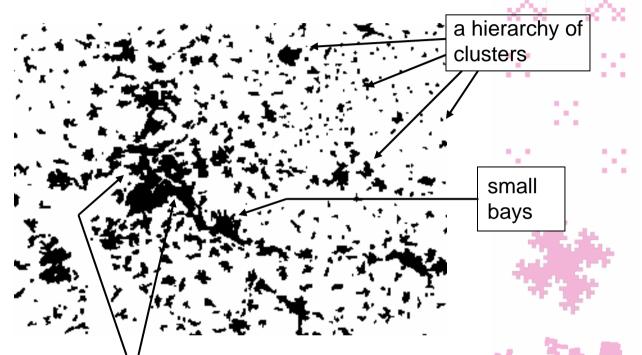
hierarchies of the street system



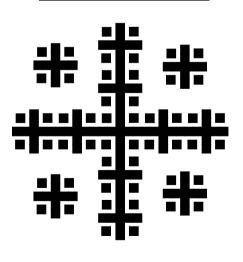


Paris and a Fournier dust

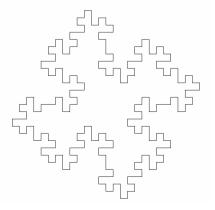
multi-scale organization of urban patterns



large bays



the agglomeration of Stuttgart and two fractal models



Urban patterns and fractality

Different fractal models serving as references ...

... according to the domain of application

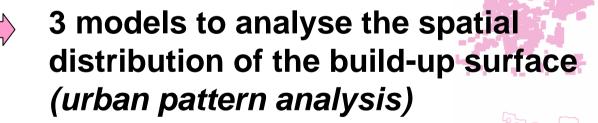
these models play the same role as cercle, squares etc. do, when referring to traditional geometry

the domain of application conditions

the choice of appropriate methods

the inetrpretation of the results

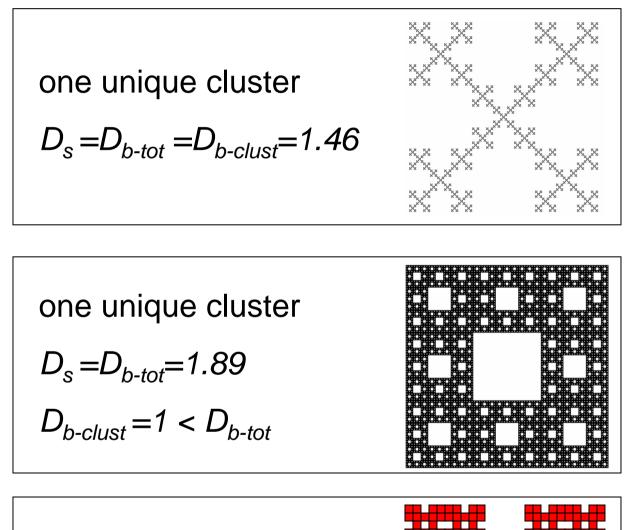
for urban patterns :

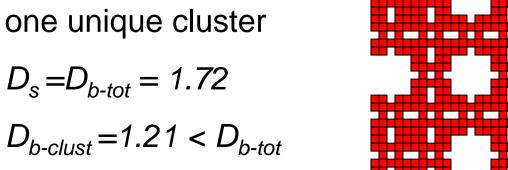


one model to make evident the dendricity of urban borders

the models

different types of Sierpinski carpets

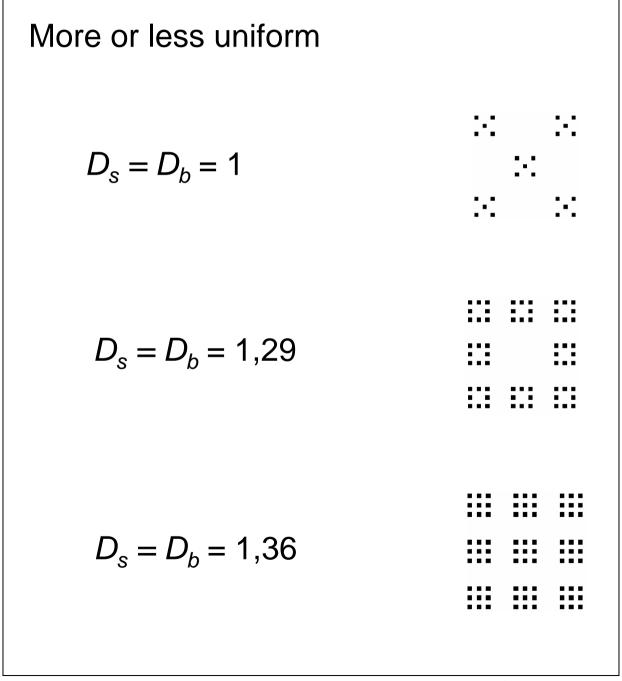




© P. Frankhauser ThéMA Besançon

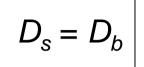
the Fournier dusts

A series of non-uniformly distributed clusters



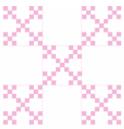
Ville et fractalité

le téragone



bordure fractale

compact à l'intérieur



le générateur

bordure du téragone D_b = 1,5

et la surface D_s = 2

